Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

170 results about "Corneum stratum" patented technology

The stratum corneum (Latin for 'horny layer') is the outermost layer of the epidermis, consisting of dead cells (corneocytes). This layer is composed of 15–20 layers of flattened cells with no nuclei and cell organelles.

Intracutaneous microneedle array apparatus

InactiveUS20050209565A1Sufficient separation distanceGreater transdermal fluxElectrotherapySurgical needlesEngineeringBiological fluids
Improved microneedle arrays are provided having a sufficiently large separation distance between each of the individual microneedles to ensure penetration of the skin while having a sufficiently small separation distance to provide high transdermal transport rates. A very useful range of separation distances between microneedles is in the range of 100-300 microns, and more preferably in the range of 100-200 microns. The outer diameter and microneedle length is also very important, and in combination with the separation distance will be crucial as to whether or not the microneedles will actually penetrate the stratum corneum of skin. For circular microneedles, a useful outer diameter range is from 20-100 microns, and more preferably in the range of 20-50 microns. For circular microneedles that do not have sharp edges, a useful length for use with interstitial fluids is in the range of 50-200 microns, and more preferably in the range of 100-150 microns; for use with other biological fluids, a useful length is in the range of 200 microns—3 mm, and more preferably in the range of 200-400 microns. For circular microneedles having sharp side edges, a useful length for use with interstitial fluids is in the range of 50-200 microns, and more preferably in the range of 80-150 microns; for use with other biological fluids, a useful length is again in the range of 200 microns—3 mm, and more preferably in the range of 200-400 microns. For solid microneedles having a star-shaped profile with sharp edges for its star-shaped blades, a useful length for use with interstitial fluids is in the range of 50-200 microns, and more preferably in the range of 80-150 microns; for use with other biological fluids, a useful length is again in the range of 200 microns—3 mm, and more preferably in the range of 200-400 microns, while the radius of each of its blades is in the range of 10-50 microns, and more preferably in the range of 10-15 microns.
Owner:CORIUM INC

Skin preparation device and biopotential sensor

The skin preparation device and sensor of the present invention include an array of rigid tines. The tines serve to “self-prepare” the skin at each electrode site. These tines, when pressed against the skin, penetrate the stratum corneum, thereby reducing skin impedance and improving signal quality. A self-prepping device of the present invention is an optimized array of short non-conductive rigid tines in which the individual tines are created in a geometry that allows for a sharp point at the tip when molding, machining or etching is used as a method of fabrication. This non-conductive array with rigid penetrating structures may, therefore, be used in combination with a conductive medium, preferably an ionic conductive gel. In penetrating the stratum corneum, micro-conduits are created in the layers of the skin enabling the conductive medium to reach the low impedance layers and to transmit bioelectrical signals from the skin to the electrode surface. Such a self-prepping device can be readily mass produced using molding methods or possibly other manufacturing methods, thereby providing for a low cost means of achieving improved performance of the biopotential sensor. Additionally this invention includes the integration of this self-prepping device into a biopotential sensor comprising an array of one or more electrodes.
Owner:TYCO HEALTHCARE GRP LP

Antibacterial and anti-felting wool fabric finishing method

The invention discloses an antibacterial and anti-felting wool fabric finishing method, and belongs to the technical field of spinning. The method includes the steps of firstly, adding hydrogen peroxide and sodium hydroxide to preprocess wool fabric so that scale cells and cortex cells of surfaces of wool fibers can be broken; secondly, conducting enzyme treatment, wherein keratinase and alkaline protease are added for concerted reaction enzymolysis, and after keratin enzymolysis is conducted on the outer layers of scales through keratinase, enzymolysis is conducted on cystine of keratin protein of parts such as inner stratum corneum and cortical layers of wool through alkaline protease; thirdly, conducting chemical finishing, wherein twice soaking and twice rolling are conducted on the wool fabric through a glycerol citric acid ester solution. By means of the method, the effect of increasing wool anti-felting and antibacterial capacity is remarkable, reaction time is short, subsequent processing is simple, the influences on breaking force and whiteness of the processed wool fabric are small, dyeing performance is greatly improved, the directional friction effect is greatly reduced, high economic benefits are achieved, and industrial popularization is facilitated.
Owner:海阳英伦纺织有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products