Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

136 results about "Flexible spacecraft" patented technology

A composite attitude and vibration control method for an anti-jamming flexible spacecraft

InactiveCN102298390AEliminate vibrationInterference torque effect eliminationAttitude controlVibration controlSpacecraft attitude control
A composite anti-jamming attitude control method for a flexible spacecraft, which is characterized in that it includes the following steps: First, by considering the vibration of the flexible attachment, the change of the spacecraft moment of inertia caused by the expansion of the flexible attachment and the space environment disturbance torque on the attitude In order to control the influence of control, a flexible spacecraft dynamics model including neutral uncertain dynamic items and external equivalent disturbance variables is established; secondly, in view of the serious influence of structural vibration on the stability of the spacecraft, and the large existence of flexible accessories such as sailboards, With the characteristics of flexibility and low damping, the PPF active vibration controller is constructed to reduce the impact of vibration modes on the spacecraft body; thirdly, the H∞ anti-jamming controller is designed to suppress vibrations from flexible mechanisms such as sailboards and extension rods. The disturbance caused by the change of the spacecraft rotational inertia caused by the deployment and the bounded disturbance such as the space environment disturbance moment; finally, based on the convex optimization algorithm, the composite anti-jamming output feedback attitude and the vibration composite controller are solved; Design and other advantages, can be used for high stability control of flexible spacecraft.
Owner:BEIHANG UNIV

Flexible satellite locus linearization attitude control method based on disturbance observer

ActiveCN105468007ATracking error converges asymptoticallyEasy to implementAttitude controlDifferentiatorKinematics equations
The invention relates to a flexible satellite locus linearization attitude control method based on a disturbance observer. The invention aims at solving problems that a single locus linearization control method is poor in capability of inhibiting interference, is poorer in robustness, and does not consider external interference and the impact from flexible accessories. The method comprises the steps: employing Euler angles for describing attitudes of a spacecraft, employing an idea of equivalent disturbance, and building a flexible spacecraft dynamics and kinetics equation; solving the pseudo-inverse of a controlled object under the condition of neglecting equivalent disturbance, designing a quasi-differentiator of a specific type, and obtaining the nominal control of an expected locus; and designing a linear time varying adjuster through proportion-integration control. The method gives consideration to the influence of equivalent disturbance, designs the disturbance observer, and guarantees the asymptotic convergence of a tracking error of a flexible spacecraft. The method improves the anti-interference capability of a system, and improves the robustness of the system. The method is used in the attitude control field of flexible satellites.
Owner:HARBIN INST OF TECH

Fuzzy singular perturbation modeling and attitude control method for complex flexible spacecraft

The invention belongs to the field of spacecraft control and relates to a fuzzy singular perturbation modeling and robust attitude control method for complex flexible spacecraft, namely a robust combined control method for fusing static output feedback control and output integration. The method comprises the following steps of: establishing an uncertain continuous fuzzy singular perturbation model and a standard discrete fuzzy singular perturbation model according to a dynamic model and a kinematic model of the spacecraft in combination with fuzzy logic and singular perturbation technology; and designing a robust controller combined by a static output feedback controller and an output integrator by a spectral norm and linear matrix inequality (LMI) method and resolving a group of LMIs which are unrelated to a perturbation parameter so as to obtain a controller parameter and solve an ill-conditioned problem caused by the perturbation parameter and the problem of difficulty in selection of an initial value in an LMI resolving static output feedback controller gain method. Through the method, flexible vibration and external interference can be overcome effectively, and control effects such as high response speed, high attitude control accuracy, high anti-jamming capability and high robust performance are achieved.
Owner:UNIV OF SCI & TECH BEIJING

Method for controlling index time-varying slide mode of flexible spacecraft characteristic shaft attitude maneuver

ActiveCN103412491ASuppress residual vibrationAvoid complex coupling relationshipsAdaptive controlDynamic modelsSpace vehicle control
The invention relates to a method for controlling an index time-varying slide mode of flexible spacecraft characteristic shaft attitude maneuver, and belongs to the technical field of spacecraft control. The method comprises the steps that firstly, a system dynamically equivalent model, a dynamic model and a flexible vibration model are established under a spacecraft system, then, the vibration frequency and the damping ratio parameter of a closed loop system with the index time-varying slide mode control law are calculated, and a single-shaft multi-modality filtering input shaping device with a characteristic shaft as a rotary shaft is designed according to the designing method of the single-shaft input shaping device to restrain flexible vibration in three-shaft motion. Meanwhile, a state observer is designed to estimate flexible modal information in real time, and the method for controlling an output feedback index time-varying slide mode is formed. At last, saturability analysis is conducted on control torque so as to satisfy the physical saturation constraint of the control torque. By means of the method, the application range of existing input shaping is expanded, the input shaping technology is expanded from single-shaft maneuver to three-shaft maneuver, the self-robustness of filter input shaping is enhanced, and the purpose that the attitude maneuver path of the spacecraft is the shortest is achieved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Flexible spacecraft attitude control system and flexible spacecraft attitude control method in allusion to flywheel low-speed friction

The invention relates to a flexible spacecraft attitude control system and a flexible spacecraft attitude control method in allusion to flywheel low-speed friction. The system comprises six modules which are a flexible spacecraft dynamics real-time simulation module with actuating mechanism characteristics, a flexible spacecraft kinematics real-time simulation module, an attitude measurement module, an attitude determination module, an attitude control module and an executing mechanism module, wherein the flexible spacecraft dynamics real-time simulation module with the executing mechanism characteristics comprises a spacecraft body, a flywheel and flexible appendage dynamics; the flexible spacecraft kinematics real-time simulation module can select different types of attitude description modes according to task requirements; the attitude measurement module can select different real sensors and sensor simulators according to the task requirements; the attitude control module comprises a conventional PID control method, a robust control method and the flexible spacecraft attitude control method in allusion to flywheel low-speed friction, and switching can be carried out according to the task requirements of the system; and the executing mechanism module comprises a real flywheel and a thruster simulator.
Owner:BEIHANG UNIV

Method for controlling flexible structure and self-adaptive changing structure by radial basis function (RBF) neural network

The invention provides a method for controlling a flexible structure and a self-adaptive changing structure by a radial basis function (RBF) neural network, belonging to the field of aviation. The method aims at solving the problem that the existing method can not preferably solve the conflict between the shake of a solar sailboard and the high-precision control target of an attitude control system. The method comprises the following steps: an E1 input forming module is used for converting an inputted expected satellite attitude angle theta d into a response uE1, and outputting the response uE1 to a nominal system and a flexible spacecraft; the nominal system is used for outputting expected satellite attitude information xm (t), and the flexible spacecraft is used for outputting practical satellite attitude information x (t) to obtain an error e (t) by comparing the xm (t) with the x (t); a sliding film face control module is used for obtaining a proper sliding film face s according to the error e (t), and transmitting the s to the RBF neural network and a self-adaptive locoregional control module; the self-adaptive locoregional control module is used for outputting a self-adaptive locoregional control u* to the RBF neural network; and the RBF neural network is used for obtaining and adjusting a locoregional control un and an adding result between the un and the uE1 according to the s and the u* to control the satellite attitude of the flexible spacecraft to achieve an expected value.
Owner:HARBIN INST OF TECH

Composite anti-interference controller comprising measurement and input time delay for flexible spacecraft

ActiveCN102736518AReduce difficultyOvercome the disadvantage of decreased accuracyAdaptive controlDead timeSystems design
The invention discloses a composite anti-interference controller comprising measurement and input time delay for a flexible spacecraft and relates to attitude control of the flexible spacecraft under time-varying delay and multi-source interference. The method comprises the following steps of: establishing a dynamical model of the flexible spacecraft; constructing a composite anti-interference controller comprising measurement and input time delay, estimating and performing feed-forward compensation on the anti-interference controller according to an interference observer comprising measurement time delay with interference design caused by vibration of flexible accessories, and designing a state feedback H8 controller to suppress the anti-interference controller according to the norm-bounded interference; designing gain of the interference observer to guarantee the stability of an interference estimated error dead time delay equation according to the 3/2 stability theorem; and finally, designing the gain of the state feedback H8 controller for a composite control system comprising measurement and input time delay based on a convex optimization algorithm, so that the system is stabilized, and a certain H8 performance is met. The composite anti-interference controller has the advantages of high interference resistance, convenience in design and the like and can be used for the attitude control of the flexible spacecraft comprising measurement and input time delay.
Owner:BEIHANG UNIV

Flexible spacecraft underactuated system based on switching control method and attitude control method thereof

InactiveCN104460679AOvercoming limitations that make it difficult to work properlyImprove reliabilityAttitude controlNonlinear modelSpacecraft attitude control
The invention discloses a flexible spacecraft underactuated system based on the switching control method and an attitude control method of the flexible spacecraft underactuated system based on the switching control method and belongs to the technical field of spacecraft attitude control. According to the flexible spacecraft underactuated system based on the switching control method and the attitude control method of the flexible spacecraft underactuated system based on the switching control method, a dynamical model of a flexible spacecraft with an execution mechanism completely ineffective is established, coupling, caused by elastic vibration of a flexible accessory, with a rigid body is taken as an uncertainty of the system, a dynamical model of a conversion system is a standard nonlinear model, all states are divided into three sliding model surfaces according to the layering sliding model idea, an equivalent control component is designed for the first layer of sliding model surface according to the Filippov equivalent theorem, a switching control law is designed by means of the second layer of sliding model surface and the third layer of sliding model surface, and a final control law is formed by combining equivalent control input and the switching control law. By the adoption of the flexible spacecraft underactuated system based on the switching control method and the attitude control method of the flexible spacecraft underactuated system based on the switching control method, the defect that in the prior art, a flexible spacecraft can not operate normally under the condition that an actuator becomes ineffective completely during operating of the flexible spacecraft is overcome, and operating reliability of a flexible spacecraft attitude control system is improved.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Method for simultaneously realizing attitude maneuver and suppressing vibration of spacecraft with flexible accessory

The invention discloses a method for simultaneously realizing attitude maneuver and suppressing vibration of a spacecraft with a flexible accessory, relating to a control method of a spacecraft with a flexible accessory and solving the problems of jet resource waste and vibration suppression incapability of the traditional attitude maneuver control method. The method for simultaneously realizing attitude maneuver and suppressing the vibration comprises the following steps of: (1) measuring the vibration modal information of a flexible spacecraft structure; (2) generating four types of jet switching sequences; (3) setting a minimum action time of the switching sequences; (4) acquiring an attitude angle and the angular velocity of the spacecraft; (5) setting an expected angle value of the attitude maneuver and generating a continuous control moment quantity of the attitude maneuver of the spacecraft according to the attitude angle and the angular velocity; (6) executing the four types of jet switching sequences according to a jet control logic and generating a non-linear switching command acted on a jet thrustor of the spacecraft; and (7) realizing the attitude maneuver of the spacecraft with the flexible accessory to the expected angle value. The invention is suitable for the field of the control of spacecrafts with flexible accessories.
Owner:HARBIN INST OF TECH

Strong interference resistance control method of flexible spacecraft attitude control system

The invention relates to a strong interference resistance control method of a flexible spacecraft attitude control system, targeting a flexible spacecraft attitude control system having a nonlinear dynamic state, flexible vibration and measurement noise multi-source interference. The strong interference resistance control method of the flexible spacecraft attitude control system comprises steps of establishing a multi-source interference resistance model according to a nonlinear euler angle kinematics and posture dynamics of the flexible spacecraft to finish multi-source interference mathematic representation and modeling, designing an interference observer on the basis of mathematic representation and modeling to perform estimation on flexible vibration, designing an extended state observer to perform estimation on a system state and a non-linear dynamic state according to output of an interference observer, designing a strong interference resistance controller according to the interference observer and the extended state observer and solving an unknown gain on the basis of pole configuration to finish design of a strong interference resistance controller according to estimation values of the interference observer and the extended state observer. The strong interference resistance control method of the flexible spacecraft attitude control system is strong in interference resistance, high in control accuracy and can be applied to high accuracy control of the flexible spacecraft.
Owner:BEIHANG UNIV

Flexible spacecraft sensor fault adjustment method

The present invention discloses a flexible spacecraft sensor fault adjustment method, belonging to the field of aerospace flight control technology. A fault estimation module and a fault tolerance controller are mainly employed by the flexible spacecraft sensor fault adjustment method, and the method comprises the steps that: a filter and an adaptive observer are employed to form a fault estimation module; fault estimation information and sensor output signals are employed to establish the fault tolerance controller through combination of adaptive integral sliding mode control technology; through adoption of the Lyapunov stability theory, the asymptotic stability of a system is proved in a condition of generation of sensor faults; and finally, a simulation experiment result proves the validity of the method provided by the invention. The fault tolerance control problem when sensor measurement offset faults are generated in an operation process of a flexible spacecraft is solved so thataccurate control of an attitude angle in the sensor fault condition is achieved and the system has a high tolerance capability for the faults; and moreover, the method fully takes the consideration of disturbances generated by spacecraft parameter uncertainty and flexible accessories in the design process and is suitable for engineering application.
Owner:NANJING UNIV OF POSTS & TELECOMM

Flexible spacecraft attitude control method for flywheel saturation and friction characteristics

The invention relates to a flexible spacecraft attitude control method for flywheel saturation and friction characteristics and aims to solve a problem of influence of flywheel saturation and friction characteristics on spacecraft control precision. According to the method, a spacecraft coupling kinetic equation containing flywheel saturation and friction characteristics is firstly constructed; secondly, a friction interference estimator according to flywheel friction characteristics is established; thirdly, a flexible vibration observer is designed according to interference caused by flexible accessory vibration; fourthly, an anti-saturation controller is designed for inhibition according to friction interference estimation errors and flexible vibration interference observation errors; and lastly, through solving control gain of the anti-saturation controller, the friction interference estimator and the flexible vibration observer, a composite layered anti-interference controller is designed, and spacecraft anti-interference attitude control under the action of multi-source interference influence is accomplished. The method is advantaged in that attitude control precision of spacecrafts employing a flywheel execution mechanism can be remarkably improved, and the method can be applied to high precision attitude control on spacecrafts such as high precision earth observation satellites in the aerospace field and space telescopes.
Owner:BEIHANG UNIV

Distributed control method capable of improving control precision of flexible spacecraft

The invention relates to a distributed control method capable of improving the control precision of a flexible spacecraft and belongs to the flexible spacecraft control field. The method includes the following steps that: an execution mechanism and a sensor are installed at the same site of each of n arbitrary positions on the flexible spacecraft, and a dynamic model is established and is linearized, so that a linear time-invariant dynamic equation and a kinematics equation of a system can be obtained and are adopted as a controller design model; and an elastic rotation angle velocity and CMGs frame angle feedback control law is designed based on the Lyapunov theory, or the Lyapunov theory and direct adaptive control are combined together so as to design a desired reference model and a direct adaptive feedback control law. According to the distributed control method of the invention adopted, the vibration suppression of the flexible spacecraft can be realized based on the execution mechanisms which are installed in a distributed manner, and therefore, the vibration of the system can be converted into a stable state from a divergence state, and the control precision of the flexible spacecraft can be improved; and the estimation of the parameters of the system is not required in direct adaptive controller design, and high robustness can be realized, and therefore, the control precision of the flexible spacecraft can be further improved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY +1

Super-size flexible spacecraft dispersion cooperative control method

The invention discloses a super-size flexible spacecraft dispersion cooperative control method, and aims to achieve high stability and vibration inhibition control on a super-size flexible spacecraft. The method comprises the following steps: S1, dividing a super-size flexible spacecraft control system into a spacecraft posture control subsystem and a flexible attachment vibration subsystem, and designing corresponding partial robust controllers for the spacecraft posture control subsystem and the flexible attachment vibration subsystem respectively; and S2, designing a coordinate controller for overall properties of the super-size flexible spacecraft control system. The method has the advantages that according to the dynamic characteristics of the super-size flexible spacecraft, a dispersion cooperative control method is adopted, a partial structure is stably controlled through dispersion stability, overall high-precision performance indexes are achieved through the cooperative controller, high appointing precision and stability of postures and deformation control precision of a flexible component are achieved, and the method is widely applied to high-precision high-stability appointing control on a large-size flexible structure.
Owner:SHANGHAI AEROSPACE CONTROL TECH INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products