Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

482 results about "Lyapunov stability" patented technology

Various types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point xₑ stay near xₑ forever, then xₑ is Lyapunov stable.

Method of taking over and controlling attitude after space tethered robot captures flexible target satellite

The invention relates to a method of taking over and controlling attitude after a space tethered robot captures a flexible target satellite. Taking regard of nondeterminacy of inertia, the coupling effect, external interference and other factors, the method of taking over and controlling attitude after space tethered robot captures flexible target satellite establishes a complex attitude and orbit coupling kinetic equation, designs inner and outer ring terminal sliding mode controllers, and gives consideration on the saturation characteristics of a thruster and a tether so as to stably control the attitude and angular velocity of the complex. The method of taking over and controlling attitude after a space tethered robot captures a flexible target satellite includes the following steps: establishing an attitude kinetic equation of a complex after a space tethered robot captures a target satellite; designing inner and outer ring terminal sliding mode controllers and the corresponding adaptive law; taking the inner ring control law and the outer ring control law as the input of a control system to take over and control the attitude after the flexible target satellite is captured; and proving Lyapunov stability. The method of taking over and controlling attitude after a space tethered robot captures a flexible target satellite can solve the problem that the flexible complex parameters are not determined and the self-supplied thruster of the space tethered robot is saturated.
Owner:NORTHWESTERN POLYTECHNICAL UNIV

Method for controlling output feedback of motor position servo system

The invention discloses a method for controlling output feedback of a motor position servo system. The method comprises the following steps that a mathematic model of the motor position servo system is established; an extended state observer is designed, and the state of the system and interference in the mathematic model are observed; a second-order low-pass filter is designed so that an error system of the motor position servo system can be established, and an output feedback controller is designed according to the error system; stability certification is conducted on the motor position servo system according to the Lyapunov stability theory, and a result of the global asymptotic stability of the system is obtained according to the Barbalat lemma. According to the method for controlling output feedback of the motor position servo system, considering uncertainty such as external interference, the extended state observer conducts estimation, compensation is conducted during design of a controller, and therefore the robustness of the actual motor position servo system to external interference is improved; in this way, the problems of a high-frequency dynamic condition, measurement noise and the like caused by high-gain feedback are greatly relieved, so that the shadowing property of the system is improved, and the motor position servo system can be applied to practical engineering more conveniently.
Owner:NANJING UNIV OF SCI & TECH

Robust neural network control system for micro-electro-mechanical system (MEMS) gyroscope based on sliding mode compensation and control method of control system

The invention discloses a robust neural network control system for a micro-electro-mechanical system (MEMS) gyroscope based on sliding mode compensation and a control method of the control system. The control system comprises a given trajectory generation module, a sliding mode surface definition module, a neural network controller, a weight adaptive mechanism module, a sliding mode compensator, an MEMS gyroscope system, a proportional-differential control module, a first adder and a second adder. The control method of the control system comprises the following steps of: establishing an MEMS gyroscope kinetic model based on a sliding mode surface, designing a controller structure, and designing an updating algorithm of a radial basis function (RBF) network weight, so that the trajectory of the MEMS gyroscope is tacked. By the control method, the influence of the unknown dynamic characteristic of the MEMS gyroscope and noise interference can be compensated on line, the vibration trajectory of the MEMS gyroscope completely follows a reference trajectory, and the anti-interference robustness and reliability of the system are improved; the updating algorithm of the network weight is designed on the basis of a Lyapunov stability theory, so that the stability of a closed-loop system is ensured; and a powerful basis is provided for expanding the application range of the MEMS gyroscope.
Owner:HOHAI UNIV CHANGZHOU

Permanent magnet linear synchronous motor slip form control system based on linear expansion state observer

The invention discloses a permanent magnet linear synchronous motor slip form control system based on a linear expansion state observer, and belongs to the technical field of linear motor control. The system comprises the following steps that: firstly, establishing the dynamic equation of a permanent magnet linear synchronous motor on a two-phase synchronous rotation orthogonal coordinate system; secondly, simplifying the dynamic equation into a special two-order integral series type mathematical model; thirdly, designing the linear expansion state observer to obtain a disturbance estimated value, and considering the estimated value in the design of a slip form control law to eliminate a chattering phenomenon; and finally, applying a Lyapunov stability theory to analyze the stability of the system. The system has the most important characteristics that the state and the disturbance of the system can be accurately estimated by the linear expansion state observer. In addition, the control system is high in robustness, and a given displacement signal can be accurately tracked. In addition, the chattering phenomenon of slip form control can be greatly improved so as to be suitable for designing the permanent magnet linear synchronous motor servo control system.
Owner:CHINA UNIV OF MINING & TECH

Motor position servo system self-adaptive control method based on interference observer

The invention discloses a motor position servo system self-adaptive control method based on an interference observer. The motor position servo system self-adaptive control method based on an interference observer includes the steps: establishing a mathematical model for a motor position servo system; constructing an interference observer and a self-adaptive controller based on the interference observer; and by means of a Liapunov stability theory, performing stability demonstration on the motor position servo system, and obtaining a global asymptotic stability result of the system by operatinga Barbalat lemma. The motor position servo system self-adaptive control method based on an interference observer is based on an integration series model and the interference observer of the motor position servo system, designs a non-linear control method based on the interference observer, integrates the non-linear control method with self-adaptive control, respectively estimates unmodeled interference and parameter nondeterminacy to enable the servo system to achieve the effect of global asymptotic stability when unmodeled interference is time-varying interference for the servo system, and solves the strong parameter nondeterminacy problem and the strong nondeterminacy non-linear problem of the system so as to enable the system to obtain better tracking performance.
Owner:NANJING UNIV OF SCI & TECH

Constrained 2D tracking control method for uncertainty intermittent process

The invention aims at an intermittent process with uncertainty, and proposes a constrained 2D tracking control method for the uncertainty intermittent process. The constrained 2D tracking control method comprises the steps of: firstly, designing an iterative learning control law for a given system dynamic model; secondly, converting the original system dynamic model into a 2D-FM closed-loop systemmodel expressed in the form of a predictive value according to a 2D system theory and the designed iterative learning control law through introducing state errors and output errors; and finally, giving a sufficient condition expressed in the form of a linear matrix inequality (LMI) for ensuring robust asymptotic stability of a closed-loop system and an expression form of the optimal control law according to a designed infinite time domain performance index and a Lyapunov stability theory. According to the constrained 2D tracking control method, numerical values of tracking errors under the control of the constrained 2D tracking control method are smaller, and the convergence is faster; more importantly, the control input does not drastically fluctuate and only require slight adjustment, thereby being conducive to resource conservation and reducing troubles caused by frequent operations.
Owner:LIAONING UNIVERSITY OF PETROLEUM AND CHEMICAL TECHNOLOGY +1

Micro gyroscope self-adaptation inversion control system and method based on neural network

The invention discloses a micro gyroscope self-adaptation inversion control system and method based on a neural network. The control system comprises a reference track module, a middle signal generating module, an inversion controller, a neural network self-adaptation system, a micro gyroscope self-adaptation controller, a first adding device and a micro gyroscope system. According to the micro gyroscope self-adaptation inversion control system and method based on the neural network, the advantages of the inversion design technology are utilized, the design processes of the micro gyroscope control system are simplified, a new path of the design of the micro gyroscope control system is opened up, meanwhile, the characteristics of the control technology of the neural network are combined, the weight parameters of the neural network are adjusted in an on-line and real-time mode, an updating algorithm of network weights is designed based on the Lyapunov stability theory, and the stability of a closed-loop system is ensured. According to the micro gyroscope self-adaptation inversion control system and method based on the neural network, unknown dynamic characteristics and influences of noise interference of the micro gyroscope can be compensated in an on-line mode, two-shaft vibration tracks of the micro gyroscope are made to track the reference track, and meanwhile the reliability and the anti-interference robustness of the system are improved.
Owner:HOHAI UNIV CHANGZHOU

Automatic lane changing layered control system and method of intelligent electric automobile

The invention relates to an automatic lane changing layered control system and method of an intelligent electric automobile. The layered control system is provided with a lane changing track programming and a lane changing track tracking, wherein dynamic programming of an intelligent electric automobile lane changing track is realized by the lane changing track programming through a manner of polynomial fit; the lane changing track tracking comprises an upper layer controller and a lower layer controller. The method comprises the following steps of obtaining a vehicle pose and road condition information through a vehicle data acquisition unit, so as to perform the programming of the lane changing track according to information of the pose of a current vehicle, the pose of a front vehicle and the like; and performing the lane changing track tracking; estimating the deviation between an actual pose of the intelligent electric automobile and the required expectation pose of a lane changing expectation track; establishing a deviation kinematics model of automatic lane changing of the intelligent electric automobile; based on the estimating deviation and the actual pose of the intelligent electric automobile, designing the upper layer controller based on a Lyapunov stability theory, determining a vehicle expectation speed V<c> and an expectation front wheel steering angle delta <c>, constructing an adaptive-blur PID controller, and determining a motor torque T required by a tracking expectation speed.
Owner:XIAMEN UNIV

Fractional-order adaptive inverse fuzzy sliding mode control method for microgyroscope

The invention discloses a fractional-order adaptive inverse fuzzy sliding mode control method for a microgyroscope. The method comprises a step of establishing a dimensionless dynamic equation mathematical model and a reference trajectory model of a microgyroscope system, and a step of constructing an inversion adaption fuzzy sliding mode controller based on a fractional order. According to the method, the real-time tracing of a target by the microgyroscope can be achieved, the robustness of the system is increased, and good performance still can be maintained under the condition of external interference. A fractional order adaptive law is designed based on a fractional order sliding mode surface, a self-adaptive identification method is designed based on a Lyapunov stability criterion, various unknown system parameters of the microgyroscope is estimated in an online way in real time, compared with an integer order, adjustable items are added, and a control effect and a parameter estimation effect are improved. A fuzzy system approaches upper bound values of a parameter uncertainty and an external disturbance total number, through the fuzzy approximation of the upper bound values,switching terms in the sliding mode controller can be continuous, and buffeting can be greatly reduced.
Owner:HOHAI UNIV CHANGZHOU

Flexible spacecraft sensor fault adjustment method

The present invention discloses a flexible spacecraft sensor fault adjustment method, belonging to the field of aerospace flight control technology. A fault estimation module and a fault tolerance controller are mainly employed by the flexible spacecraft sensor fault adjustment method, and the method comprises the steps that: a filter and an adaptive observer are employed to form a fault estimation module; fault estimation information and sensor output signals are employed to establish the fault tolerance controller through combination of adaptive integral sliding mode control technology; through adoption of the Lyapunov stability theory, the asymptotic stability of a system is proved in a condition of generation of sensor faults; and finally, a simulation experiment result proves the validity of the method provided by the invention. The fault tolerance control problem when sensor measurement offset faults are generated in an operation process of a flexible spacecraft is solved so thataccurate control of an attitude angle in the sensor fault condition is achieved and the system has a high tolerance capability for the faults; and moreover, the method fully takes the consideration of disturbances generated by spacecraft parameter uncertainty and flexible accessories in the design process and is suitable for engineering application.
Owner:NANJING UNIV OF POSTS & TELECOMM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products