Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

79 results about "Gain cell" patented technology

Gain cell type non-volatile memory having charge accumulating region charged or discharged by channel current from a thin film channel path

A semiconductor memory element subject to a threshold voltage controlling method other than those based on low leak currents or on the implantation of impurities. Such semiconductor elements are used to form semiconductor memory elements that are employed in scaled-down structures and are conducive to high-speed write operations thanks to a sufficiently prolonged refresh cycle. These semiconductor memory elements are in turn used to constitute a semiconductor memory device. A very thin semiconductor film is used as channels so that leak currents are reduced by the quantum-mechanical containment effect in the direction of film thickness. An amount of electrical charges in each charge accumulating region is used to change conductance between a source and a drain region of each read transistor structure, the conductance change being utilized for data storage. A channel of a transistor for electrically charging or discharging each charge accumulating region is made of a semiconductor film 5 nm thick at most. The arrangement affords both high-speed data write performance and an extended data retention time. The invention provides a high-speed, power-saving semiconductor device of high integration particularly advantageous for producing a small-scale system of low-power dissipation.
Owner:HITACHI LTD

Vertical gain cell and array for a dynamic random access memory and method for forming the same

A vertical gain memory cell including an n-channel metal-oxide semiconductor field-effect transistor (MOSFET) and p-channel junction field-effect transistor (JFET) transistors formed in a vertical pillar of semiconductor material is provided. The body portion of the p-channel transistor is coupled to a second source/drain region of the MOSFET which serves as the gate for the JFET. The second source/drain region of the MOSFET is additionally coupled to a charge storage node. Together the second source/drain region and charge storage node provide a bias to the body of the JFET that varies as a function of the data stored by the memory cell. A non destructive read operation is achieved. The stored charge is sensed indirectly in that the stored charge modulates the conductivity of the JFET so that the JFET has a first turn-on threshold for a stored logic “1” condition and a second turn-on threshold for a stored logic “0” condition. The charge storage node is a plate capacitor which surrounds the second source/drain region of the MOSFET. The vertical gain cell is fabricated so that the write word line, read bit line, read word line and capacitor are buried beneath the silicon surface. As a result the cell can be fabricated in an area as small as four (4) lithographic feature squares.
Owner:MICRON TECH INC

Memory gain cell

A memory cell includes: a charge storage element (e.g., capacitor); a switch constructed and arranged to selectively connect the charge storage element to a first data line, responsive to a first select signal; and a gain element having an input connected to receive a signal from the capacitor and constructed and arranged to selectively provide a corresponding output signal to a second data line, responsive to a second select signal. The switch can be a FET having a drain connected to the first data line, a source connected to the capacitor and a gate connected to the first select signal. The gain element can be a FET having a gate connected to the capacitor, a source connected to the second data line and a drain selectively connected to one of an upper power supply and a lower power supply. The switch can transfer a signal from the first data line onto the capacitor and can transfer a signal from the capacitor onto the first data line when selected by the first select signal. A two-dimensional array of such memory cells can be formed, wherein the first select signal and the second select signal orthogonally select cells, to facilitate matrix pivot operations and bit interleave/de-interleave operations. Also, a method of addressing an array of such memory cells can comprise: writing groups of bits linearly arrayed with respect to each other; and reading groups of bits linearly arrayed with respect to each other and orthogonally disposed to the groups of bits written.
Owner:ANALOG DEVICES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products