Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

127 results about "Strain wave gearing" patented technology

Strain wave gearing also known as harmonic gearing is a special type of mechanical gear system that can improve certain characteristics compared to traditional gearing systems such as helical gears or planetary gears. It was invented in 1957 by C.W. Musser while he was a research advisor at United Shoe Machinery (USM). The advantages include: no backlash, compactness and light weight, high gear ratios, reconfigurable ratios within a standard housing, good resolution and excellent repeatability when repositioning inertial loads, high torque capability, and coaxial input and output shafts. High gear reduction ratios are possible in a small volume (a ratio from 30:1 up to 320:1 is possible in the same space in which planetary gears typically only produce a 10:1 ratio). Disadvantages include a tendency for 'wind-up' (a torsional spring rate) in the low torque region. Strain wave gears are typically used in industrial motion control, machine tool, printing machine, robotics and aerospace, for gear reduction but may also be used to increase rotational speed, or for differential gearing.

Method for compensating for angular transmission error of wave gear device

ActiveUS20110054820A1Precise positioningReduction of the positioning precision by the motor shaft synchronous component can be inhibited or preventedDigital data processing detailsAutomatic steering controlPower flowElectric machine
A positioning system (1) provided with an actuator (2) having a wave gear device (4) is driven and controlled by a semi-closed loop control for controlling the load position of a load device (5) based on the motor position of a motor shaft (31) of a motor (3). In a method for compensating for an angular transmission error by compensating for a motor shaft synchronous component θSync that occurs in synchrony with the motor position and is a relative rotation-synchronous component that includes an angular transmission error component of the wave gear device (4), the positioning system (1) is represented as a two-inertia model, and the motor shaft synchronous component θSync is represented as an oscillation source for producing a twisting action between the two inertia bodies in the two-inertia model. A motor current command iref is corrected by a compensation current command icomp calculated so as to allow the effect of the motor shaft synchronous component θSync on the load position to be compensated in this case, and a motor position command r is corrected by a motor position correction signal θcomp calculated in order to compensate for the effect of the motor shaft synchronous component θSync.
Owner:HARMONIC DRIVE SYST IND CO LTD +1

Wave gear device having three-dimensionally contactable shifted tooth profile

Disclosed is a wave gear device (1) for setting the flexible state of the principal section (30) of a flexible external gear in a normal-deflection state (at a deflection coefficient κ=1). The moving locus of a tooth profile in the principal section (30) is determined by a rack approximation, and a similar curve (BC), which is obtained by similarly transforming a curve (AB) cut from that moving locus, is used to define the fundamental addendum shape of the tooth profile in the principal section. The portion of the tooth profile of the flexible external gear other than the principal section is shifted so that both each negative-deflection side moving locus (M3), which is obtained in each plane of rotation to deflect in a negative deflection state (at the deflection coefficient κ<1) closer to the diaphragm side than the principal section and each positive-deflection side moving locus (M2), which is obtained in each plane of rotation to deflect in a positive deflection state (at the deflection coefficient κ>1) closer to the front end opening side than the principal section, may become curves (M3a and M2a) to contact at the bottom (a point (P)) of a normal-deflection moving locus (M1). The partial meshing engagement can also be held at the section other than the principal section in the tooth trace direction, so that the load torque performance of the wave gear device can be advantageously improved.
Owner:HARMONIC DRIVE SYST IND CO LTD

Wave gear device having three-dimensional continuous contact tooth profile

In a wave gear device, similarity curve tooth profiles for defining the tooth-face tooth profile of each of a flexible externally toothed gear and a rigid internally toothed gear is determined from the movement trajectory, relative to a tooth of the rigid internally toothed gear, of a tooth of the flexible externally toothed gear at a main cross-section at which the deflection factor is κ=1. Tooth profile curves, which have been subjected to profile shifting corresponding to the difference between the deflection factor κo (>1) of the opening-end cross-section of the flexible externally toothed gear and the deflection factor κ of the main cross-section, are determined from the similarity curves; and the tooth profile curves are used to form the tooth-face tooth profile portions of the two gears. High-gear-tooth compound tooth profiles, defined from the tooth-face tooth profile portions, straight-line tooth profile portions continuing from the tooth-face tooth profile portions, and appropriate tooth-flank tooth profile portions for avoiding interference are used as tooth profiles of the internal teeth and the external teeth. Also, taking coning of the flexible externally toothed gear into account, negative profile shifting is applied from an opening-end cross-section to an inner-end cross-section of the flexible externally toothed gear, and rational meshing between the two gears is obtained along the entire tooth trace.
Owner:HARMONIC DRIVE SYST IND CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products