Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

85 results about "Two's complement" patented technology

Two's complement is a mathematical operation on binary numbers, and is an example of a radix complement. It is used in computing as a method of signed number representation. The two's complement of an N-bit number is defined as its complement with respect to 2. For instance, for the three-bit number 010, the two's complement is 110, because 010 + 110 = 1000. The two's complement is calculated by inverting the digits and adding one.

Memory device, motion vector detection device, and detection method

This invention relates to a memory device and the like that are preferably applied to a case where motion vector is detected using a block matching. Pixel data of a first frame (a reference frame) is stored in a unit A of memory cell array portion 20a in straight binary format. Pixel data of a second frame (a search frame) is stored in a unit B of memory cell array portion 20b in two's complement format. The units A and B have a plurality of memory cells, respectively. Word lines WL related to the pixel data of the first and second frames are simultaneously activated so that charges accumulated in capacitors of each of the memory cells can be combined along one bit line BL. A / D converter 53 outputs a digital signal (absolute difference value) having a value that corresponds to a total amount of charges. When reading the pixel data, a subtraction and a conversion into the absolute difference value are simultaneously performed.
Owner:SONY CORP

Multiply and multiply and accumulate unit

The present invention relates to a multiply apparatus and a method for multiplying a first operand consisting of na bits and a second operand consisting of nx bits. In one embodiment the multiply apparatus comprising a CSA (CSA) unit with nx rows each comprising na AND gates for calculating a single bit product of two single bit input values and adder cells for adding results of a preceding row to a following row and a last output row for outputting a carry vector and a sum vector, and logic circuitry for selectively inverting the single bit products at the most significant position of the nx−1 first rows and at the na−1 least significant positions of the output row in response to a first configuration signal before inputting the selectively inverted single bit products to respective adder cells for switching the CSA unit selectively between processing of signed two's complement operands and unsigned operands in response to the first configuration signal. In one embodiment the method comprising outputting a carry vector and a sum vector, and adding the carry vector and the sum vector provided by the output row of the CSA unit via a CPA unit consisting of a row of na full adder cells, wherein the carry input of the CPA unit is coupled to receive a first configuration signal to switch between processing of signed and unsigned two's complement operands.
Owner:TEXAS INSTR INC

Sign Operation Instructions and Circuitry

A co-processor for efficiently decoding codewords encoded according to a Low Density Parity Check (LDPC) code, and arranged to efficiently execute an instruction to multiply the value of one operand with the sign of another operand, is disclosed. Logic circuitry is included in the co-processor to select between the value of a second operand, and an arithmetic inverse of the second operand value, in response to the sign bit of the first operand. This logic circuitry is arranged to operate according to 2's-complement integer arithmetic, by also including invert-and-increment circuitry to produce a 2's-complement inverse of the second operand. A comparator determines whether the second operand is at a maximum 2's-complement negative value, in which case the arithmetic inverse is selected to be a hard-wired maximum 2's-complement positive value. Logic circuitry is also included in the co-processor to execute an instruction to multiple the signs of two operands; this logic circuitry is realized as an exclusive-OR function operating on the sign bits of the operands, and a multiplexer for selecting between digital words of the values +1 and −1 in response to the exclusive-OR function. The logic circuitry can be arranged in multiple blocks in parallel, to provide parallel execution of the instruction in wide datapath processors.
Owner:TEXAS INSTR INC

Apparatus and method for performing a convert-to-integer operation

A data processing apparatus includes processing circuitry for performing a convert-to-integer operation for converting a floating-point value to a rounded two's complement integer value. The convert-to-integer operation uses round-to-nearest, ties away from zero, rounding (RNA rounding). The operation is performed by generating an intermediate value based on the floating-point value, adding a rounding value to the intermediate value to generate a sum value, and outputting the integer-valued bits of the sum value as the rounded two's complement integer value. If the floating-point value is negative, then the intermediate value is generated by inverting the bits without adding a bit value of 1 to a least significant bit of the inverted value.
Owner:ARM LTD

MRI apparatus and RF pulse generating circuit

An MRI apparatus includes: an RF coil to which analog RF pulse signals are applied; an RF pulse generating circuit which generates said analog RF pulse signals; and a magnetic resonance signal receiving circuit which receives analog magnetic resonance signals and converts these signals into baseband digital magnetic resonance signals, said RF pulse generating circuit comprising: a carrier signal generator which generates a digital carrier signal having a predetermined number of bits; a digital modulator which modulates said digital carrier signal with a digital envelope signal, thus generating digital RF pulse signals; a digital-analog converter which converts said digital RF pulse signals into the analog RF pulse signals; and an inversion unit which generates a digital inverted carrier signal having a two's complement relationship with said digital carrier signal and sends the digital inverted carrier signal to said magnetic resonance signal receiving circuit, said magnetic resonance signal receiving circuit comprising: an analog-digital converter which converts the analog magnetic resonance signals into digital magnetic resonance signals having a predetermined number of bits; and a digital demodulator which demodulates said digital magnetic resonance signals with said digital inverted carrier signal, thus converting these signals into the baseband digital magnetic resonance signals.
Owner:GE MEDICAL SYST GLOBAL TECH CO LLC

MRI apparatus and RF pulse generating circuit

An MRI apparatus includes: an RF coil to which analog RF pulse signals are applied; an RF pulse generating circuit which generates said analog RF pulse signals; and a magnetic resonance signal receiving circuit which receives analog magnetic resonance signals and converts these signals into baseband digital magnetic resonance signals, said RF pulse generating circuit comprising: a carrier signal generator which generates a digital carrier signal having a predetermined number of bits; a digital modulator which modulates said digital carrier signal with a digital envelope signal, thus generating digital RF pulse signals; a digital-analog converter which converts said digital RF pulse signals into the analog RF pulse signals; and an inversion unit which generates a digital inverted carrier signal having a two's complement relationship with said digital carrier signal and sends the digital inverted carrier signal to said magnetic resonance signal receiving circuit, said magnetic resonance signal receiving circuit comprising: an analog-digital converter which converts the analog magnetic resonance signals into digital magnetic resonance signals having a predetermined number of bits; and a digital demodulator which demodulates said digital magnetic resonance signals with said digital inverted carrier signal, thus converting these signals into the baseband digital magnetic resonance signals.
Owner:GE MEDICAL SYST GLOBAL TECH CO LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products