Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1240results about "Leaky-waveguide antennas" patented technology

Surface wave antenna mountable on existing conductive structures

What is disclosed is a surface wave antenna configured to install on an electrically conductive structure. The surface wave antenna includes a first portion comprising a conductive element and an attachment element, and a second portion comprising a conductive element and an attachment element. The conductive element of the first portion and the conductive element of the second portion are configured to each form a conductive longitudinal portion of a horn receive element, and the attachment elements are configured to conductively couple the conductive elements together to form the horn receive element. The surface wave antenna also includes a dipole element comprising a first transmit element and a second transmit element. The surface wave antenna also includes a mounting element comprising a first dielectric mount and a second dielectric mount.
Owner:T MOBILE INNOVATIONS LLC

Meta-element antenna and array

An antenna having at least one main element and a plurality of parasitic elements. At least some of the elements have coupling elements or devices associated with them, the coupling elements or devices being tunable to thereby control the degree of coupling between adjacent elements. Controlling the degree of coupling allows a lobe associated with the antenna to be steered.
Owner:HRL LAB

Aperture matched polyrod antenna

InactiveUS20080252541A1Minimizes and reduces end reflection and phase variationMinimizing and reducing diameterAdditive manufacturing apparatusWaveguide type devicesGaussian beamLight beam
A dielectric polyrod having at least one tapered section, where a section exposed outside of the waveguide is tapered a long a curve that depends on the dielectric constant of the material used. The invention also relates to an aperture matched polyrod antenna which includes the same and an inductive tuning element used to achieve wideband impedance match and to create a Gaussian beam in the radiating near field of the antenna, suitable to mimic a small region plane wave.
Owner:ARIZONA STATE UNIVERSITY

System and method for dual-band antenna matching

A dual-band antenna matching system and a method for dual-band impedance matching are provided. The method comprises: accepting a frequency-dependent impedance from an antenna; and, selectively supplying a conjugate impedance match for the antenna at either a first and a second communication band, or a third and a fourth communication band. More specifically, the method comprises: tuning a first tuning circuit to a first frequency; and, simultaneously tuning a second tuning circuit to a second frequency. In response, a conjugate match is supplied to the antenna in the first communication band in response to the first frequency. Simultaneously, the antenna is matched in the second communication band in response to the second frequency. When the first tuning circuit is tuned to a third frequency, and the second tuning circuit is tuned to a fourth frequency, then conjugate matches are supplied for the third and fourth communication bands, responsive to the third and fourth frequencies, respectively.
Owner:KYOCERA CORP

Communication System and Communication Apparatus

A communication system includes the following elements: a transmitter including a transmission circuit unit configured to generate an RF signal for transmitting data and an electric-field-coupling antenna configured to transmit the RF signal as an electrostatic field; a receiver including an electric-field-coupling antenna and a reception circuit unit configured to receive and process the RF signal received by the electric-field-coupling antenna; and a surface-wave propagation medium configured to provide a surface-wave transmission line to transmit a surface wave emanating from the electric-field-coupling antenna of the transmitter with low propagation loss.
Owner:SONY CORP

Communication system and communication apparatus

A communication system includes the following elements: a transmitter including a transmission circuit unit configured to generate an RF signal for transmitting data and an electric-field-coupling antenna configured to transmit the RF signal as an electrostatic field; a receiver including an electric-field-coupling antenna and a reception circuit unit configured to receive and process the RF signal received by the electric-field-coupling antenna; and a surface-wave propagation medium configured to provide a surface-wave transmission line to transmit a surface wave emanating from the electric-field-coupling antenna of the transmitter with low propagation loss.
Owner:SONY CORP

Method and system for a smart antenna utilizing leaky wave antennas

Methods and systems for a smart antenna utilizing leaky wave antennas (LWAs) are disclosed and may include a programmable polarization antenna including one or more pairs of LWAs configured along different axes. One or more pairs of leaky wave antennas may be configured to adjust polarization and / or polarity of one or more RF signals communicated by the programmable polarization antenna. RF signals may be communicated via the configured programmable polarization antenna utilizing the configured one or more pairs of the leaky wave antennas. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. The polarization and / or polarity may be configured utilizing switched phase modules. The LWAs may include microstrip or coplanar waveguides, wherein a cavity height of the LWAs is dependent on spacing between conductive lines in the waveguides. The LWAs may be integrated in one or more integrated circuits, packages, and / or printed circuit boards.
Owner:AVAGO TECH INT SALES PTE LTD

Transmitting/receiving antenna, isolator, high-frequency oscillator, and high-frequency transmitter-receiver using the same

A millimeter-wave transmitter-receiver uses an NRD guide as a fundamental configuration and includes a millimeter-wave signal oscillator, a pulse modulator, a circulator, an antenna and a mixer. In the millimeter-wave transmitter-receiver, a line length of a third dielectric guide is set so that δ=±π in which δ is a phase difference at a center frequency between a portion of a transmission millimeter-wave signal, which is reflected via a third dielectric guide on the leading end portion of the third dielectric guide and returned to leak to a third connecting portion of the circulator, and another portion of the millimeter-wave signal, which leaks from a first connecting portion to the third connecting portion of the circulator. It is possible to reduce the change in the mixer output and enhance the millimeter-wave transmission / reception performance.
Owner:KYOCERA CORP

Ka/Ku dual band feedhorn and orthomode transduce (OMT)

A dual band, higher and lower frequency range transducer with a circular coaxial waveguide feed is described having a first junction for connection of a lower frequency range outer waveguide of the coaxial waveguide feed to at least two rectangular or ridge waveguides offset from the longitudinal axis of the transducer and a second junction for connection of the at least two rectangular or ridge waveguides to a further waveguide. A third junction is provided for connecting an inner waveguide of the coaxial waveguide feed to a higher frequency range waveguide. The transducer comprises at least first and second parts joined across a first plane substantially perpendicular to the longitudinal axis and including at least a portion of the higher frequency range waveguide extending within the first plane of the join. A seal such as an "O" ring seal may be placed easily in the plane of the join thus preventing moisture ingress. Similarly, a feed horn and input and output ports may be sealingly attached to the first and second parts of the transducer. The first and second junctions are preferably impedance matched turnstile junctions.
Owner:NEWTEC CY

Antenna device

An antenna device includes a reflector plate, plane conductors, an antenna element, variable impedance elements, control wires and linear conductors. The plane conductors are arranged regularly on a plane which is parallel to the reflector plate. The antenna element is set on the plane, to be parallel to the reflector plate. The variable impedance elements provide a directivity to the antenna element, the directivity is radiating a wave strongly to a particular direction. Each control wire supplies a control signal to each of the variable impedance elements. Each linear conductor connects each of some plane conductors with the reflector plate. Moreover, each of the other plane conductors is connected to the reflector plate through a portion of each control wire instead of the linear conductor.
Owner:KK TOSHIBA

Dielectric resonator array antenna

Disclosed herein is a dielectric resonator array antenna including one or more series-feed type array elements installed to be arranged in parallel in a multilayer substrate, wherein first high frequency signals having the same or different phases or time delays are adjusted to be applied to the respective series-feed type array elements and respective radiated 1D array beams are individually used or combined to adjust beamforming of 2D array beams. Also, since the series-feed type array element is configured by connecting a plurality of dielectric resonator antennas in series, it can be easily and simply fed in series through coupling generated by the intervals between the feeding lines of the pertinent feeding unit of the plurality of dielectric resonator antennas connected in series. In addition, the broadband characteristics can be obtained by using the plurality of dielectric resonator antennas, whereby the overall antenna performance can be enhanced.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD +1

Microcellular communications antenna and associated methods

A radio frequency (RF) communications system includes a local RF communications device and an RF antenna including a conical RF launch structure coupled to the local RF communications device, and an elongate electrical conductor having a proximal end coupled to the conical RF launch structure and a distal end spaced apart from the conical RF launch structure to define an elongate RF coverage pattern. The elongate conductor may be a coaxial cable. At least one remote RF communications device, within the elongate RF coverage pattern, wirelessly communicates with the local RF communications device.
Owner:HARRIS CORP

Hexagonal array structure of dielectric rod to shape flat-topped element pattern

InactiveUS7167139B2Wide beam scanning rangeConstant electric performanceIndividually energised antenna arraysLeaky-waveguide antennasCouplingEngineering
A hexagonal array structure of a dielectric rod for shaping a flat-topped element pattern (FTEP) is provided. The hexagonal structure of dielectric rods forming a flat-topped element pattern (FTEP) includes: a center element for forming a unit radiation pattern of the FTEP through an electromagnetic wave mutual coupling by receiving a polarization signal of a basic mode; a plurality of first ring elements arranged at vertexes of a regular hexagon based on the center element for forming the unit radiation pattern by electromagnetic wave mutual coupling with the center element and an electromagnetic wave; and a circular waveguide array supporting unit for supporting the center element and the plurality of first ring elements.
Owner:ELECTRONICS & TELECOMM RES INST

Microstrip arrangement

The invention relates to a microstrip arrangement comprising a first and a second microstrip conductor. The two microstrip conductors have essentially the same dimensions in their longitudinal direction and transverse direction, and are galvanically interconnected by means of at least one connection. The two microstrip conductors also extend essentially parallel to one another on either side of a dielectric material. As a result of this design of the microstrip arrangement, the field losses and also other influences caused by the dielectric material will be very considerably reduced, and in practice a resultant microstrip arrangement is obtained, which, with regard to its electrical performance, appears to be suspended in the air. Preferred embodiments comprise a microstrip antenna, a circuit board and a conductor application.
Owner:HIGHBRIDGE PRINCIPAL STRATEGIES LLC AS COLLATERAL AGENT

Aperture matched polyrod antenna

InactiveUS7889149B2Minimizes and reduces end reflection and phase variationMinimizing and reducing diameterAdditive manufacturing apparatusCoupling devicesGaussian beamLight beam
A dielectric polyrod having at least one tapered section, where a section exposed outside of the waveguide is tapered a long a curve that depends on the dielectric constant of the material used. The invention also relates to an aperture matched polyrod antenna which includes the same and an inductive tuning element used to achieve wideband impedance match and to create a Gaussian beam in the radiating near field of the antenna, suitable to mimic a small region plane wave.
Owner:ARIZONA STATE UNIVERSITY

Low/high frequency shared leakage antenna, base station apparatus and close-range detection system using the antenna

The present invention provides a high / low frequency dual wireless location detection and information transmission system which is high in reliability and maintainability, and can be easily installed.A leakage coaxial inner conductor and a conductor line provided in parallel are short-circuited at an end, a single leakage coaxial operation and a loop operation of the inner conductor and the conductor line are performed at the same time, the ID of a tag is communicated using magnetic fields which locally exist near the conductor line by the loop, and wireless position detection and information communications which are less affected by the influence of ambient environments due to electromagnetic waves in a closed area are realized by open-type lines.
Owner:HITACHI LTD +1

Transverse device array radiator ESA

An antenna array employing continuous transverse stubs as radiating elements is described, which includes an upper conductive plate structure comprising a set of continuous transverse stubs, and a lower conductive plate structure disposed in a spaced relationship relative to the upper plate structure. The upper plate structure and the lower plate structure define an overmoded waveguide medium for propagation of electromagnetic energy. For each of the stubs, one or more transverse device array phase shifters are disposed therein.
Owner:RAYTHEON CO

Multi-receiver communication system with distributed aperture antenna

A multi-user wireless communication system for use in an enclosed space includes a distributed aperture antenna having multiple apertures distributed along an outer shield of the antenna. The apertures allow radiated energy to leak from the antenna and form low-power, localized electric fields that can couple receivers to the antenna. The multiple electric fields ensure that the electric field strength is distributed evenly throughout the communication system. The low-power electric fields also reduce the likelihood of electric field leakage that may cause interference with other communication systems outside the enclosed space.
Owner:HAMILTON SUNDSTRAND CORP

Source-antennas for transmitting/receiving electromagnetic waves

The present invention relates to a source-antenna for transmitting / receiving electromagnetic waves comprising an array of n radiating elements (113, 114) operating in a first frequency band, means (20) with longitudinal radiation operating in a second frequency band, the array and the means with longitudinal radiation having a substantially common phase centre, the n radiating elements being arranged symmetrically about the longitudinal-radiation means, and each element (113, 114) of the array consisting of a radiating element of the travelling wave type.
Owner:THOMSON LICENSING SA

Meta-element antenna and array

An antenna having at least one main element and a plurality of parasitic elements. At least some of the elements have coupling elements or devices associated with them, the coupling elements or devices being tunable to thereby control the degree of coupling between adjacent elements. Controlling the degree of coupling allows a lobe associated with the antenna to be steered.
Owner:HRL LAB

Reconfigurable dielectric waveguide antenna

A reconfigurable directional antenna for transmission and reception of electromagnetic radiation includes a transmission line aligned with and adjacent to a metal antenna element with an evanescent coupling edge having a selectively variable electromagnetic coupling geometry. The shape and direction of the beam are determined by the selected coupling geometry of the coupling edge, as determined by the pattern of electrical connections selected for physical edge features of the coupling edge. The electrical connections between the edge features are selected by the selective actuation of an array of “on-off” switches that close and open electrical connections between individual edge features. The selection of the “on” or “off” state of the individual switches thus changes the electromagnetic geometry of the coupling edge, and, therefore the direction and shape of the transmitted or received beam. The actuation of the switches may be accomplished under the control of an appropriately-programmed computer.
Owner:SIERRA NEVADA CORP

Method and system for an integrated voltage controlled oscillator-based transmitter and on-chip power distribution network

Methods and systems for an integrated voltage controlled oscillator (VCO)-based transmitter and on-chip power distribution network are disclosed and may include supplying bias voltages and / or ground to a chip utilizing conductive lines. One or more VCOs and low-noise amplifiers (LNAs) may each be coupled to a leaky wave antenna (LWA) integrated in the bias voltage and / or ground lines. One or more clock signals may be generated utilizing the VCOs, which may be transmitted from the LWAs coupled to the VCOs, to the LWAs coupled to the LNAs. RF signals may be transmitted via the LWAs, and may include 60 GHz signals. The LWAs may include microstrip and / or coplanar waveguides, where a cavity length of the LWAs may be dependent on a spacing between conductive lines in the waveguides. The LWAs may be dynamically configured to transmit the clock signals at a desired angle from a surface of the chip.
Owner:AVAGO TECH INT SALES PTE LTD

Transmission/reception sources of electromagnetic waves for multireflector antenna

The present invention relates to an electromagnetic wave transmission / reception source for a multireflector antenna of the Cassegrain type comprising longitudinal-radiation means operating in a first frequency band and an array of n radiating elements of the travelling-wave type operating in a second frequency band with the n radiating elements arranged symmetrically around the longitudinal-radiation means, the array and the longitudinal-radiation means having an approximately common phase centre, the array of n radiating elements being excited by a waveguide of polygonal cross section. The invention applies especially in satellite communication systems operating in the C-, Ku- or Ka-bands.
Owner:THOMSON LICENSING SA

System and method for impedance matching an antenna to sub-bands in a communication band

A sub-band antenna matching method and an antenna matching system for selectively matching a communication bandwidth segment impedance have been provided. The method comprises: accepting a frequency-dependent impedance from an antenna; and, selectively supplying a conjugate impedance match for the antenna at a sub-band of a first communication band. In some aspects, the method selectively supplies a conjugate impedance match for the antenna at a sub-band of a second communication band. More specifically, the method comprises: tuning a first tuning circuit to a first frequency; simultaneously tuning a second tuning circuit to a second frequency to match the antenna at a low end of the first communication band. Likewise, the first tuning circuit is tuned to a third frequency and the second tuning circuit is tuned to a fourth frequency to match the antenna at a high end of the first communication band in response to the third and fourth frequencies.
Owner:KYOCERA CORP

Substrate Integrated Waveguide Antenna Array

A substrate integrated waveguide (SIW) slot full-array antenna fabricated employing printed circuit board technology. The SIW slot full-array antenna using either single or multi-layer structures greatly reduces the overall height and physical steering requirements of a mobile antenna when compared to a conventional metallic waveguide slot array antenna. The SIW slot full-array antenna is fabricated using a low-loss dielectric substrate with top and bottom metal plating. An array of radiating cross-slots is etched in to the top plating to produce circular polarization at a selected tilt-angle. Lines of spaced-apart, metal-lined vias form the sidewalls of the waveguides and feeding network. In multi-layer structures, the adjoining layers are coupled by transverse slots at the interface of the two layers.
Owner:UNIV OF TENNESSEE RES FOUND

Dielectric antenna

Described and shown is a dielectric antenna (1) having a dielectric feeding section (2), a first transition section (3) comprising a dielectric rod, a dielectric emitting section (5) and, a further, second transition section (4) forming a dielectric horn, wherein the feeding section (2) can be struck with electromagnetic radiation (6), electromagnetic radiation (6) can be guided with the first transition section (3) and the second transition section (4) and the electromagnetic radiation can be emitted from the emitting section (5) as airborne waves.The object of the present invention is to provide a dielectric antenna, which is adaptable as low-loss as possible to different mounting situations, which additionally is as low-reflection as possible and, at the same time is highly bundling.The object of the above-mentioned dielectric antenna is met in that the emitting section (5) is designed as dielectric tube connecting to the second transition section (4).
Owner:KROHNE MESSTECHNICK GMBH & CO KG

Tunable power amplifier matching circuit

InactiveUS6859104B2Reduce cost and size and power consumptionMultiple-port networksHigh frequency amplifiersAudio power amplifierControl signal
A power amplifier matching circuit is provided. The matching circuit includes a ferro-electric tunable component. A control signal is applied to the tunable component, changing the component's impedance. This changes the impedance of the matching circuit.
Owner:KYOCERA CORP

Full-duplex antenna system and method

A system and method is provided for full-duplex antenna impedance matching. The method comprises: effectively resonating a first antenna at a frequency selectable first channel in a first frequency band; generating a first antenna impedance at the first channel frequency; effectively resonating a second antenna at a frequency selectable second channel in the first frequency band; generating a second antenna impedance at the second channel frequency; supplying a first conjugate impedance match at the first channel frequency; and, supplying a second conjugate impedance match at the second channel frequency. For example, the first antenna may be used for transmission, while the second antenna is used for received communications. The antennas effectively resonant in response to: supplying frequency selectable conjugate impedance matches to the antennas; generating frequency selectable antenna impedances; and / or selecting the frequency of antenna resonance.
Owner:KYOCERA CORP

Array antenna device and radio communication device

An array antenna device includes a plurality of slot array antennas which are arranged and each of which includes a plurality of slot antennas and a radiation surface, which is formed to be conformal, and a plurality of waveguides each of which supplies respective power to each of the slot array antennas. After bodies of the waveguides are formed by a resin molding method, surface treatment is performed with respect to inner surfaces of the waveguides with plating.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products