Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

312results about "Magnetic gradient measurements" patented technology

Magnetic resistance Z-axis gradient sensor chip

The invention discloses a magnetic resistance Z-axis gradient sensor chip which is used for detecting the gradients of components of a Z-axis magnetic field generated by magnetic media in the X-Y plane so as to conduct magnetic imaging on the magnetic media. The magnetic resistance Z-axis gradient sensor chip comprises a Si substrate, two or two groups of sets containing a plurality of flux leaders and magnetic resistance sensing units which are electrically connected, wherein the distance between the sets is Lg. The magnetic resistance sensing units are located on the Si substrate and located above or below the edges of the flux leaders, the components of the Z-axis magnetic field are converted into the mode that the components of the Z-axis magnetic field are parallel to the surface of the Si substrate and in the direction of the sensitive axes of the magnetic resistance sensing units, and the magnetic resistance sensing units are electrically connected into a half-bridge or whole-bridge gradient meter, wherein the distance between opposite bridge arms is Lg. The sensor chip can be used together with a PCB, a PCB and back magnetor a PBC and back magnet and packaging shell. According to the magnetic resistance Z-axis gradient sensor chip, measurement of the Z-axis magnetic field gradient is achieved by using plane sensitive magnetic resistance sensors, and the magnetic resistance Z-axis gradient sensor chip has the advantages of being small in size and low in power consumption, having higher magnetic field sensitivity than a Hall sensor and the like.
Owner:MULTIDIMENSION TECH CO LTD

MEG device and method based on atomic magnetometer/magnetic gradiometer

An atomic magnetometer/magnetic gradiometer comprises at least one detection gas chamber, wherein the detection gas chamber is filled with alkali metal vapor; a laser light source, which is used for emitting an excitation light beam and a detection light beam to irradiate the detection gas chamber, wherein the excitation light beam is used for enabling alkali metal vapor in the detection gas chamber to be polarized, and the detection light beam is used as polarized light to pass through the alkali metal vapor and then reach the polarization detection device; a modulation coil which is used forgenerating a modulation magnetic field with the known intensity for the alkali metal vapor; a polarization detection device which is used for receiving the detection light beam, and according to thepolarization angle change information of the to-be-measured magnetic field overlapped by the modulated magnetic field, the polarization angle change information of the light beam is detected, and of the detection light beam in a to-be-measured magnetic field subjected to superposition by the modulation magnetic field, acquiring detection signals of magnetic field intensity or magnetic field gradient of the to-be-measured magnetic field. The invention further provides a MEG device and method based on the atomic magnetometer/ the magnetic gradiometer. The invention is based on a discrete atomicmagnetometer/the magnetic gradiometer, and realizes the detecting of the brain magnetic signals of the wearable multi-channel detection of MEG signals.
Owner:COGNITIVE MEDICAL IMAGING LTD

Full-tensor magnetic field gradiometer based on giant magnetic impedance effect

The invention discloses a full-tensor magnetic field gradiometer based on the giant magnetic impedance effect. The full-tensor magnetic field gradiometer comprises an X-Y-direction gradiometer body, a Z-direction gradiometer body and signal leads. The X-Y-direction gradiometer body comprises a cross-shaped substrate and a giant magnetic impedance thin film, the Z-direction gradiometer body comprises a rectangular substrate and a giant magnetic impedance thin film, a junction point at the input end and a junction point at the output end of an electric bridge are connected with the signal leads, and the signal leads are arrayed symmetric with the geometric center of the whole gradiometer as the three-dimensional center. The full-tensor magnetic field gradiometer has the advantages of being high in accuracy, minimized, low in cost, wide in frequency response, rich in information and the like. Due to the design of preparing a three-dimensional structure through planar thin films, the problem of space consistency of the full-tensor magnetic field gradiometer based on the giant magnetic impedance thin films is solved, and the magnetic field gradient measuring sensor with the size at the chip level is designed for the first time.
Owner:BEIHANG UNIV

Measuring and controlling device for aviation superconducting full tensor magnetic gradient based on GPS (Global Positioning System) synchronization

The invention discloses a measuring and controlling device for aviation superconducting full tensor magnetic gradient based on GPS (Global Positioning System) synchronization. The measuring and controlling device is characterized by being positioned in a pod of a suspension and pod subsystem; the measuring and controlling device for the aviation superconducting full tensor magnetic gradient consists of an SQUID (Superconducting Quantum Interference Device) reading circuit, a data acquisition and communication module, a flying position and pose information recording module, a working environment monitoring module and a human-machine interface module; other four modules are connected by taking a star topology structure with the data acquisition and communication module as the core. According to the device, after a specific signal at the designated time is resampled by a PPS (Pulses Per Second) frequency doubling sampling clock generated through a digital phase-locked loop based on a GPS time service function, the synchronization of the device and the position and pose information which are given out by a GPS integration navigation is realized by using a time stamp, so that the foundation is laid for inversion by altitude projection; besides, the measuring and controlling device has the characteristics of simplicity for realization, and high extendibility and reliability, and is particularly suitable for being applied under an aviation platform.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products