Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

30results about How to "Reduce GIDL" patented technology

Method for fabricating buried gate using pre landing plugs

A method for fabricating a semiconductor device is provided, the method includes forming a plug conductive layer over an entire surface of a substrate, etching the plug conductive layer to form landing plugs, etching the substrate between the landing plugs to form a trench, forming a gate insulation layer over a surface of the trench and forming a buried gate partially filling the trench over the gate insulation layer.
Owner:SK HYNIX INC

Semiconductor device having a buried gate that can realize a reduction in gate-induced drain leakage (GIDL) and method for manufacturing the same

A semiconductor device having a buried gate that can realize a reduction in gate-induced drain leakage is presented. The semiconductor device includes a semiconductor substrate, a buried gate, and a barrier layer. The semiconductor substrate has a groove. The buried gate is formed in a lower portion of the groove and has a lower portion wider than an upper portion. The barrier layer is formed on sidewalls of the upper portion of the buried gate.
Owner:SK HYNIX INC

Protecting circuit and control circuit for reducing leakage current

A protecting circuit for reducing leakage currents comprises a first PMOS transistor (P-channel Metal-Oxide-Semiconductor Field-Effect Transistor), a second PMOS transistor, a first NMOS transistor (N-channel Metal-Oxide-Semiconductor Field-Effect Transistor), and a second NMOS transistor. The first PMOS transistor is coupled between a first voltage node and a node, and comprises a first gate coupled an input node. The second PMOS transistor is coupled between the node and an output node. The first NMOS transistor is coupled between the output node and a ground node, and comprises a third gate coupled to the input node. The second NMOS transistor is coupled between the input node and a second gate of the second PMOS transistor, and comprises a fourth gate coupled to a second voltage node.
Owner:WINBOND ELECTRONICS CORP

Semiconductor device and manufacturing method thereof

ActiveCN108962985AReduce the vertical electric field strengthReduce GIDLTransistorSolid-state devicesEngineeringSemiconductor device modeling
The present invention discloses a semiconductor device and a manufacturing method thereof and belongs to the semiconductor technological field. The device comprises a substrate, a first fin, a first gate structure, a first source region and a first drain region; the first fin is arranged on the substrate and is used for a first device; the first gate structure is located on a portion of the firstfin and comprises a first gate dielectric layer on a portion of the first fin and a first gate on the first gate dielectric layer; the first source region and the first drain region are arranged on two sides of the first gate structure and at least partially located in the first fin; a portion of the first gate dielectric layer, which adjoins the first drain region, is a first portion, a portion of the first gate dielectric layer, which adjoins the first source region, is a second portion; and a portion of the first gate dielectric layer, which is located between the first portion and the second portion, is a third portion, and the thickness of the first portion is greater than the thickness of the third portion. With the semiconductor device and the manufacturing method thereof of the invention adopted, the GIDL (gated-induce drain leakage) of the device can be decreased.
Owner:SEMICON MFG INT (SHANGHAI) CORP +1

Semiconductor structure and preparation method thereof

The invention relates to a semiconductor structure and a preparation method thereof. The preparation method of the semiconductor structure comprises the steps of providing a substrate; forming a groove in the substrate, wherein the bottom and the side wall of the groove are covered by the dielectric layer; forming a sacrificial layer in the dielectric layer; forming a conductive layer, wherein the upper surface of the conductive layer is lower than the upper surface of the substrate; removing the sacrificial layer to form air side walls on two opposite sides of the conductive layer; and forming an insulation protection layer, wherein the insulation protection layer covers the upper surface of the conductive layer and the top of the air side wall. According to the preparation method of the semiconductor structure, the conductive layer with relatively high height is formed in the groove, and the cross sectional area of the conductive layer can be increased under the condition that the line width of the word line structure is kept unchanged, so that the word line resistance is greatly reduced, the word line conduction current is improved, and the response speed of a transistor is improved; in addition, the air side walls are formed on the two opposite sides of the conducting layer, so that the electric field between the grid electrode and the drain electrode can be reduced, the GIDL is reduced, the crystal power consumption of the transistor is reduced, and the reliability of the transistor is improved.
Owner:CHANGXIN MEMORY TECH INC

Method for forming semiconductor device with metal grid electrode

The invention provides a method for forming a semiconductor device with a metal grid electrode, which comprises the steps of: providing a front-end device structure, wherein the front-end device structure is provided with a semiconductor substrate and an interlayer medium layer arranged on the semiconductor substrate, the interlayer medium layer is internally provided with an opening from which a part of the semiconductor substrate is exposed, and the semiconductor substrate which is arranged at two sides of the opening and is covered by the interlayer medium layer is internally provided with a source electrode / a drain electrode; forming a barrier layer on the front-end device structure; etching the barrier layer, so that a barrier gap wall layer is formed on the side wall of the opening; performing an ion implantation technology to the semiconductor substrate by the means that the barrier gap wall layer and the interlayer medium layer are taken as mask films, so that an unevenly-doped channel is formed; removing the barrier gap wall layer; and forming a high-k material layer in the opening, and filling with metal, so that the semiconductor device with the metal grid electrode is formed. After the semiconductor device with the metal grid electrode is formed according to the method provided by the invention, not only can the gate induced drain leakage (GIDL) be effectively reduced, but also the short channel effect can be improved.
Owner:SEMICON MFG INT (SHANGHAI) CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products