Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

372 results about "Ablation radiofrequency" patented technology

Tissue ablation using radiofrequency. [edit on Wikidata] Radiofrequency ablation (RFA) is a medical procedure in which part of the electrical conduction system of the heart, tumor or other dysfunctional tissue is ablated using the heat generated from medium frequency alternating current (in the range of 350–500 kHz).

High frequency thermal ablation of cancerous tumors and functional targets with image data assistance

This invention relates to the destruction of pathological volumes or target structures such as cancerous tumors or aberrant functional target tissue volumes by direct thermal destruction. In the case of a tumor, the destruction is implemented in one embodiment of the invention by percutaneous insertion of one or more radiofrequency probes into the tumor and raising the temperature of the tumor volume by connection of these probes to a radiofrequency generator outside of the body so that the isotherm of tissue destruction enshrouds the tumor. The ablation isotherm may be predetermined and graded by proper choice of electrode geometry and radiofrequency (rf) power applied to the electrode with or without temperature monitoring of the ablation process. Preplanning of the rf electrode insertion can be done by imaging of the tumor by various imaging modalities and selecting the appropriate electrode tip size and temperature to satisfactorily destroy the tumor volume. Computation of the correct three-dimensional position of the electrode may be done as part of the method, and the planning and control of the process may be done using graphic displays of the imaging data and the rf ablation parameters. Specific electrode geometries with adjustable tip lengths are included in the invention to optimize the electrodes to the predetermined image tumor size.
Owner:COVIDIEN AG

Multi-channel RF energy delivery with coagulum reduction

A system for efficient delivery of radio frequency (RF) energy to cardiac tissue with an ablation catheter used in catheter ablation, with new concepts regarding the interaction between RF energy and biological tissue. In addition, new insights into methods for coagulum reduction during RF ablation will be presented, and a quantitative model for ascertaining the propensity for coagulum formation during RF ablation will be introduced. Effective practical techniques a represented for multichannel simultaneous RF energy delivery with real-time calculation of the Coagulum Index, which estimates the probability of coagulum formation. This information is used in a feedback and control algorithm which effectively reduces the probability of coagulum formation during ablation. For each ablation channel, electrical coupling delivers an RF electrical current through an ablation electrode of the ablation catheter and a temperature sensor is positioned relative to the ablation electrode for measuring the temperature of cardiac tissue in contact with the ablation electrode. A current sensor is provided within each channel circuitry for measuring the current delivered through said electrical coupling and an information processor and RF output controller coupled to said temperature sensor and said current sensor for estimating the likelihood of coagulum formation. When this functionality is propagated simultaneously through multiple ablation channels, the resulting linear or curvilinear lesion is deeper with less gaps. Hence, the clinical result is improved due to improved lesion integrity.
Owner:SICHUAN JINJIANG ELECTRONICS SCI & TECH CO LTD

Cardiac and or respiratory gated image acquisition system and method for virtual anatomy enriched real time 2d imaging in interventional radiofrequency ablation or pace maker replacement procecure

The present invention refers to the field of cardiac electrophysiology (EP) and, more specifically, to image-guided radio frequency ablation and pacemaker placement procedures. For those procedures, it is proposed to display the overlaid 2D navigation motions of an interventional tool intraoperatively obtained from the same projection angle for tracking navigation motions of an interventional tool during an image-guided intervention procedure while being navigated through a patient's bifurcated coronary vessel or cardiac chambers anatomy in order to guide e.g. a cardiovascular catheter to a target structure or lesion in a cardiac vessel segment of the patient's coronary venous tree or to a region of interest within the myocard. In such a way, a dynamically enriched 2D reconstruction of the patient's anatomy is obtained while moving the interventional instrument. By applying a cardiac and / or respiratory gating technique, it can be provided that the 2D live images are acquired during the same phases of the patient's cardiac and / or respiratory cycles. Compared to prior-art solutions which are based on a registration and fusion of image data independently acquired by two distinct imaging modalities, the accuracy of the two-dimensionally reconstructed anatomy is significantly enhanced.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Radio frequency ablation system with integrated ultrasound imaging

A tissue ablation system comprises a first electrode assembly adapted for insertion into a target tissue mass within a body, the first electrode assembly including a first electrode coupled to a source of RF energy in combination with an ultrasound imaging probe movably coupled to the first electrode assembly for insertion with the first electrode assembly to a desired location relative to the target tissue mass, the probe being movable relative to the first electrode assembly between an insertion configuration in which a distal end of the probe covers a distal end of the first electrode assembly and a deployed configuration in which the distal end of the first electrode assembly is uncovered. A method of ablating target tissue within a body comprises placing a distal dome of an ultrasound imaging probe in overlying alignment with a first cannula of an RF ablation device and inserting the probe and the RF ablation device through a lumen of an insertion device to a desired location adjacent to a target tissue mass in combination with moving the distal dome away from a distal end of the first cannula to expose a distal end thereof, inserting the distal end of the first cannula into the target tissue mass to position a first electrode of the RF ablation device at a first desired location within the target tissue mass, obtaining an image of the target tissue mass and the first electrode via the probe and applying RF energy to the target tissue mass via the first electrode.
Owner:BOSTON SCI SCIMED INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products