Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

51 results about "Selective ablation" patented technology

Crystal silicon surface femtosecond laser selective ablation method based on electron dynamic control

The invention relates to a crystal silicon surface femtosecond laser selective ablation method based on electron dynamic control, and belongs to the technical field of femtosecond laser application. The crystal silicon surface femtosecond laser selective ablation method based on the electron dynamic control enables laser polarization parameters and crystal lattice properties of crystal silicon materials to be integrated, through the operation that femtosecond laser rays or the included angel of elliptic polarization and monocrystal silicon is adjusted effectively, the selective induction generation of crystal silicon surface periodical ripple micro nano structures is controlled by regulating and controlling material surface instant electron excitation dynamic states, and the induction generation of the crystal silicon surface periodical ripple micro nano structures can be achieved effectively and accurately according to preliminary design. According to the crystal silicon face femtosecond laser selective ablation method based on the electron dynamic control, selective ablation control is carried out on the silicon surface periodic ripple nano structures with diamond lattice structures from the aspect of static laser irradiation and the aspect of laser direct writing, the processing accuracy and the processing efficiency of the surface processing of the silicon surface periodic ripple nano structures are improved greatly, and the application value of the method on the aspects such as information storage is high.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Method for electronic dynamic control of crystal silicon surface periodic micro-nano structures based on square hole assistance

ActiveCN104625416ALower ablation thresholdEfficient and precise designLaser beam welding apparatusCopper wireLaser scanning
The invention relates to a method for electronic dynamic control of crystal silicon surface periodic micro-nano structures based on square hole assistance and belongs to the technical field of femtosecond laser application. The method is based on local transient electronic excitation dynamic control, and femtosecond laser linear polarization is focused through an objective lens and then is focused on the surface of a material through a square hole copper wire mesh to achieve various precise control of different surface periodic micro-nano structures; by controlling laser scanning speed and pulse energy, ablation of strip-shaped surface corrugated structures and multi-point array micro-nano structures is achieved; by controlling the relative positions of the laser polarization direction and the direction (x axis) of the edge of a square hole, direction control of the periodic micro-nano structures can be achieved; by effectively adjusting the included angle between the linear polarization laser direction and the direction (x axis) of the edge of the square hole, selective ablation of the crystal silicon surface periodic micro-nano structures is achieved. Compared with existing methods, the method has the advantages that surface processing precision and efficiency are improved effectively, and efficient and accurate form control of the surface periodic micro-nano structures is achieved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Systems and methods for corneal surface ablation to correct hyperopia

Systems, methods and apparatus for performing selective ablation of a corneal surface of an eye to effect a desired corneal shape, particularly for correcting a hyperopic/astigmatic condition by laser sculpting the corneal surface to increase its curvature. In one aspect of the invention, a method includes the steps of directing a laser beam onto a corneal surface of an eye, and changing the corneal surface from an initial curvature having hyperopic and astigmatic optical properties to a subsequent curvature having correctively improved optical properties. Thus, the curvature of the anterior corneal surface is increased to correct hyperopia, while cylindrical volumetric sculpting of the corneal tissue is performed to correct the astigmatism. The hyperopic and astigmatic corrections are preferably performed by establishing an optical correction zone on the anterior corneal surface of the eye, and directing a laser beam through a variable aperture element designed to produce a rectangular ablation (i.e., cylindrical correction) on a portion of the optical correction zone. The laser beam is then displaced by selected amounts across the optical correction zone to produce a series of rectangular ablations on the correction zone that increases the curvature of the corneal surface to correct the hyperopic refractive error.
Owner:AMO MFG USA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products