Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

61 results about "Mode volume" patented technology

In fiber optics, mode volume is the number of bound modes that an optical fiber is capable of supporting. The mode volume M is approximately given by 4V2/π² and V2/2(g/g+2), respectively for step-index and power-law index profile fibers, where g is the profile parameter, and V is the normalized frequency, which must be greater than 5 for this approximation to be valid.

Bragg refractive waveguide edge transmitting semiconductor laser with low horizontal divergence angle

The invention relates to a Bragg refractive waveguide edge transmitting semiconductor laser with a low horizontal divergence angle, wherein the P electrode of the laser is placed on the top face of a cover layer and is electrically connected onto the cover layer; the N electrode is positioned on the back face of a substrate and is electrically connected to the substrate; a center cavity is positioned between an upper waveguide layer and a lower waveguide layer; an active area is inserted in the center cavity; a Bragg refractive waveguide formed by periodically distributing a plurality of layers of N-doped materials with a high refractive index and a low refractive index is adopted in the lower waveguide layer on; and a Bragg refractive waveguide formed by periodically distributing a plurality of layers of P-doped materials with a high refractive index and a low refractive index is adopted in the upper waveguide layer. The Bragg refractive waveguide edge transmitting semiconductor laser with the low horizontal divergence angle has the advantages that: effects such as catastrophic damage, hole burning, electric heat overburning, beam filamentization and the like on the end face of the traditional edge transmitting semiconductor laser can be effectively improved, and the laser can realize the large mode-volume and stable single-transverse-mode work because of the great gain loss difference between a basic mode and a high-order mode, the full wave at half maximum (FWHM) of the transverse far-field divergence angle of the laser can reach below 10 DEG.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Methods, materials and devices for light manipulation with oriented molecular assemblies in micronscale photonic circuit elements with high-q or slow light

An optical device that comprises an input waveguide, an output waveguide, a high-Q resonant or photonic structure that generate slow light connected to the input waveguide and the output waveguide, and an interface, surface or mode volume modified with at least one material formed from a single molecule, an ordered aggregate of molecules or nanostructures. The optical device may include more than one input waveguide, output waveguide, high-Q resonant or photonic structure and interface, surface or mode volume. The high-Q resonant or photonic structure may comprise at least one selected from the group of: microspherical cavities, microtoroidal cavities, microring-cavities, photonic crystal defect cavities, fabry-perot cavities, photonic crystal waveguides. The ordered aggregate of molecules or nanostructures comprises at least one selected from the group of: organic or biological monolayers, biological complexes, cell membranes, bacterial membranes, virus assemblies, nanowire or nanotube assemblies, quantum-dot assemblies, one or more assemblies containing one or more rhodopsins, green fluorescence proteins, diarylethers, lipid bilayers, chloroplasts or components, mitochondria or components, cellular or bacterial organelles or components, bacterial S-layers, photochromic molecules. Further, the molecular aggregate may exhibit a photoinduced response.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Methods, materials and devices for light manipulation with oriented molecular assemblies in micronscale photonic circuit elements with High-Q or slow light

An optical device that comprises an input waveguide, an output waveguide, a high-Q resonant or photonic structure that generate slow light connected to the input waveguide and the output waveguide, and an interface, surface or mode volume modified with at least one material formed from a single molecule, an ordered aggregate of molecules or nanostructures. The optical device may include more than one input waveguide, output waveguide, high-Q resonant or photonic structure and interface, surface or mode volume. The high-Q resonant or photonic structure may comprise at least one selected from the group of: microspherical cavities, microtoroidal cavities, microring-cavities, photonic crystal defect cavities, fabry-perot cavities, photonic crystal waveguides. The ordered aggregate of molecules or nanostructures comprises at least one selected from the group of: organic or biological monolayers, biological complexes, cell membranes, bacterial membranes, virus assemblies, nanowire or nanotube assemblies, quantum-dot assemblies, one or more assemblies containing one or more rhodopsins, green fluorescence proteins, diarylethers, lipid bilayers, chloroplasts or components, mitochondria or components, cellular or bacterial organelles or components, bacterial S-layers, photochromic molecules. Further, the molecular aggregate may exhibit a photoinduced response.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Method for generating third-harmonic-generation ultraviolet laser through fold resonating cavity

The invention discloses a method for generating a third-harmonic-generation ultraviolet laser through a fold resonating cavity. Laser crystal is pumped from the side face of a laser diode, simulated radiation is generated, fundamental frequency light generation is formed in the cavity, fundamental frequency light is converted into pulsed light through a Q switch, the power density of the fundamental frequency light is improved, second harmonics are generated by the fundamental frequency light through frequency doubling crystal, the ultraviolet laser is generated by the remaining fundamental frequency light and the generated second harmonics under the action of sum frequency crystal and is output out of the cavity through an output mirror; ultraviolet emergent light in one direction is reflected to the resonating cavity for vibration in a continued mode by an ultraviolet reflecting mirror outside the fold resonating cavity, so that the ultraviolet light is only output in one direction and loss of the ultraviolet light is reduced. The method of inner-cavity frequency doubling and sum frequency is applied to the fold resonating cavity, the high power density inside the cavity and the large mode volume are utilized, and therefore the ultraviolet laser conversion efficiency is improved.
Owner:BEIJING UNIV OF TECH

Graphene embedded echo-wall microsphere cavity monomolecular gas sensor

The invention belongs to the field of sensing, and in particular relates to a graphene embedded echo-wall microsphere cavity monomolecular gas sensor based on graphene singular points. According to the invention, the mode volume of microspheres is effectively reduced through gold electrodes on the microspheres, the number of resonant modes is greatly reduced, and the graphene embedded echo-wall microsphere cavity monomolecular gas sensor relies on physical adsorption of graphene and characteristics of the electrically adjustable Fermi level, microsphere cavities can be precisely controlled towork at the singular points through electrically regulated supermaterial graphene to improve the sensing response speed and sensitivity, and furthermore, resonant cavities with high-quality factors can greatly reduce the sensing power consumption: the response time is only one thousandth of that of an electrochemical gas sensor, the sensitivity can be 10,000 or more than 10,000 times that of the traditional optical gas sensor, and the sensing power consumption is as low as 70 nanowatt. Optical fiber communication networks can be conveniently accessed by using common single-mode optical fiber connectors. By adopting the graphene embedded echo-wall microsphere cavity monomolecular gas sensor disclosed by the invention, the sensing sensitivity achieves the monomolecular weight level and the sensing power consumption is lower on the basis of ensuring small sensor size, simple structure and fast response.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

GaN-based metal-ultrathin oxide-semiconductor composite structure nanolaser and preparation method thereof

InactiveCN106785913AUniform diameter and lengthSmall optical mode volumeLaser detailsLaser active region structureBiological imagingLaser light
The invention discloses a GaN-based metal-ultrathin oxide-semiconductor composite structure nanolaser, which comprises a substrate and an InGaN / Ga quantum well nano-column, wherein the structure of the substrate sequentially comprises a SiO2-Si substrate, a metal layer and an ultrathin oxide layer; the InGaN / Ga quantum well nano-column is put on the surface of the ultrathin oxide layer and structure of the InGaN / Ga quantum well nano-column sequentially comprises a sapphire substrate layer, an n-type GaN layer, an In<x>Ga<x-1>N / GaN quantum well active layer and a p-type GaN layer. The invention further discloses a preparation method of the GaN-based metal-ultrathin oxide-semiconductor composite structure nanolaser. The nanolaser has the advantages that (1) the nanolaser has very small optical mode volume and can break through a diffraction limit of light, and the submicron-sized laser can be achieved; (2) the laser has an extremely low lasing threshold and an MUTOS laser light structure can lase under an optical pump of 0.15kW / cm<2>; and (3) the mode of laser light can be regulated and controlled and single-mode and multi-mode laser light transmission is achieved. The laser structure has potential application value in the aspects of ultra-high resolution intelligent displaying, complicated biological imaging, and photoelectric interconnection of a silicon-based integration circuit and a photoelectronic device.
Owner:NANJING UNIV

Semiconductor optical amplifier

ActiveCN106785915APhoton density increaseIncreased pattern volumeLaser detailsSemiconductor lasersUltravioletDivergence angle
The invention discloses a semiconductor optical amplifier, and especially relates to a GaAs-based semiconductor optical amplifier having a parabola-shaped curved-surface waveguide structure. Material of the semiconductor optical amplifier is a GaAs-based material system. An N-type AlxGa1-xAs buffer layer, an N-type AlGaAsSb lower limit layer, an N-type N-AlxGa1-xAs lower waveguide layer, an InxGa1-xAs quantum well active region, a P-type AlxGa1-xAs upper waveguide layer and a P-type AlGaAsSb upper limit layer are epitaxially prepared on an N-type GaAs substrate in sequence. The upper waveguide layer of the semiconductor optical amplifier is in the parabola-shaped curved-surface structure; such structure can enable a parabola-shaped curved-surface tip to have higher photon density, thereby improving mode volume of the semiconductor optical amplifier and enabling the semiconductor optical amplifier to have higher gain; and meanwhile, the parabola-shaped curved-surface waveguide structure facilitates compressing divergence angle of the semiconductor optical amplifier, thereby realizing high-power output and improving fiber coupling efficiency. The parabola-shaped curved-surface structure of the upper waveguide layer of the semiconductor optical amplifier is prepared through electron beam lithography or ultra-violet lithography, and then, through a dry method and wet method combined etching process.
Owner:CHANGCHUN UNIV OF SCI & TECH

Fabrication method for electro-optical tuning whispering gallery mode microcavity of integrated electrode

InactiveCN106374335AHigh Q valueIncrease the refractive index ratioLaser optical resonator constructionChemical platingWhispering gallery
A method for fabricating an electro-optical tuning whispering gallery mode microcavity of an integrated electrode by a femtosecond laser microprocessing technology comprises the steps of helping to induce electrode chemical plating by a femtosecond laser, etching a microcavity structure by the femtosecond laser, grinding focused ion beam and performing chemical corrosion. In the three-dimensional whispering gallery mode optical microcavity fabricated according to the method, continuous total internal reflection of light is achieved by the ratio between refractive indexes of a cavity and an external environment, the three-dimensional whispering gallery mode optical microcavity has extremely high surface smoothness, and a small mode size and a high quality factor (larger than 10<5>) are supported; and meanwhile, accurate control on an electric field around the microcavity can be achieved by a transversely-integrated electrode, continuous adjustment of the refractive indexes is achieved by an electro-optical effect of a cavity material, and the purpose of mode cavity tuning in a whispering gallery mode is further achieved. The method is applicable to various dielectric thin film materials with electro-optical effects.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products