Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

348 results about "Electrodeionization" patented technology

Electrodeionization (EDI) is a water treatment technology that utilizes electricity, ion exchange membranes and resin to deionize water and separate dissolved ions (impurities) from water. It differs from other water purification technologies in that it is done without the use of chemical treatments and is usually a polishing treatment to reverse osmosis (RO). There are also EDI units that are often referred to as continuous electrodeionization (CEDI) since the electric current regenerates the resin mass continuously. CEDI technique can achieve very high purity, with conductivity below 0.1 μS/cm.

Method and apparatus for preventing scaling in electrodeionization units

A method and apparatus is provided for inhibiting scaling in an electrodeionization system and, more particularly, for increasing tolerance to hardness in the feed water to an electrodeionization unit by inhibiting precipitation of scale-forming metallic cations contained in the feed water and thereby increasing efficiencies of the electrodeionization system. Water to be purified is passed through an electrodeionization unit in which the flow in the diluting compartment is countercurrent to the flow in the concentrating compartment. This is to impede the migration of scale-forming metallic cations from the diluting compartment, through the cation exchange membrane, into the concentrating compartment and towards the concentrating compartment side of the anion exchange membrane, thereby preventing scale formation on the anion exchange membrane. The electrodeionization unit may be further modified by dividing the concentrating compartments into first and second compartments by a porous diaphragm or ion-conducting membrane. The porous diaphragm or ion-conducting membrane effectively eliminates convective transport of scale-forming metallic cations from the cation exchange membrane side of the concentrating compartment to the anion exchange membrane side of the concentrating compartment, thereby inhibiting scale formation on the anion exchange membrane.
Owner:E CELL

Arrangement of ion exchange material within an electrodeionization apparatus

An electrodeionization apparatus is provided comprising an ion-concentrating compartment partially bounded by an anion permeable membrane and also partially bounded by a cation permeable membrane, and a first ion exchange material domain disposed within the ion-concentrating compartment, wherein the first ion exchange material domain is contiguous with at least a portion of an ion-concentrating compartment side surface of one of the anion permeable membrane and the cation permeable membrane, and is spaced apart from the other one of the one of the anion permeable membrane and the cation permeable membrane. In the case where the one of the anion permeable membrane and the cation permeable membrane, having the at least a portion of an ion-concentrating compartment side surface with which the first ion exchange material domain is contiguous, is an anion permeable membrane, the first ion exchange material domain is an anion exchange material predominant domain. In the case where the one of the anion permeable membrane and the cation permeable membrane, having the at least a portion of an ion-concentrating compartment side surface with which the first ion exchange material domain is contiguous, is a cation permeable membrane, the first ion exchange material domain is a cation exchange material predominant domain.
Owner:BL TECH INC

Sparse media edi apparatus and method

An electrodeionization, (EDI) apparatus has flow cells with a sparse distribution of ion exchange (IX) material or beads. The beads extend between membranes defining opposed walls of the cell to separate and support the membranes, and form a layer substantially free of bead-to-bead dead-end reverse junctions. The beads enhance capture of ions from surrounding fluid in dilute cells, and do not throw salt when operating current is increased. In concentrating cells, the sparse bead filling provides a stable low impedance bridge to enhanced power utilization in the stack. A monotype sparse filling may be used in concentrate cells, while mixed, layered, striped, graded or other beads may be employed in dilute cells. Ion conduction paths are no more than a few grains long and the lower packing density permits effective fluid flow. A flow cell thickness may be below one millimeter, and the beads may be discretely spaced, form a mixed or patterned monolayer, or form an ordered bilayer, and a mesh having a lattice spacing comparable to or of the same order of magnitude as resin grain size, may provide a distributed open support that assures a stable distribution of the sparse filling, and over time maintains the initial balance of uniform conductivity and good through-flow. The cells or low thickness and this resin layers relax stack size and power supply constraints, while providing treatment efficiencies and process stability. Reduced ion migration distances enhance the ion removal rate without reducing the product flow rate. The sparse resin bed may be layered, graded along the length of the path, striped or otherwise patterned. Inter-grain ion hopping is reduced or eliminated, thus avoiding the occurrence of salt-throwing which occurs at reverse bead junctions of prior art constructions. Conductivity of concentrate cells is increased, permitting more compact device construction, allowing increases in stack cell number, and providing more efficient electrical operation without ion additions. Finally, ion storage within beads is greatly reduces, eliminating the potential for contamination during reversal operation. Various methods of forming sparse beds and assembling the stacks are disclosed.
Owner:IONICS INC

Regeneration of adsorption media within electrical purification apparatuses

The present disclosure generally relates to methods, systems, and devices for electrically purifying liquids containing species such as minerals, salts, ions, organics, and the like. One aspect of the invention provides an electrical purification apparatus, including an electrodeionization device. The electrodeionization device may be run in any suitable fashion, for example, continuously or essentially continuously, intermittently, upon demand, with periodic reversals of polarity. In another aspect, methods of regenerating media within an electrical purification device are provided, for example, exposing the media to one or more eluting solutions, and/or selectively desorbing ions, organics, and/or other species from the media by exposing the media to certain eluting conditions. In yet another aspect, methods of selectively removing one or more ions, organics, and/or other species from a liquid to be purified are provided, by selective removal of one or more ions, or organics, and the like from solution that can easily precipitate, and/or cause scaling or fouling to occur. In still another aspect, the invention provides a method of treating a solution containing ions, organics, and/or other species using an electrical purification apparatus in a continuous or semi-continuous fashion, while also performing regeneration of media contained within the apparatus.
Owner:SIEMENS WATER TECH HLDG CORP

Method and apparatus for electrodeionization of water

An electrodeionization apparatus has an anolyte compartment 17 having an anode 11, a catholyte compartment 18 having a cathode 12, concentrating compartments 15, and desalting compartments 16. The concentrating compartments 15 and the desalting compartments 16 are alternately formed between the anolyte compartment 17 and the catholyte compartment 18 by alternately arranging a plurality of anion-exchange membranes 13 and a plurality of cation-exchange membranes 14. The desalting compartments 16 are filled with ion-exchanger and the concentrating compartments 15 are filled with ion-exchanger, activated carbon, or electric conductor. Electrode water flows into the anolyte compartment 17 and the catholyte compartment 18. Concentrated water is introduced into the concentrating compartments 15. Raw water is fed into the desalting compartment 16 to produce the deionized water from the desalting compartment 16. Water containing silica or boron at a lower concentration than the raw water is introduced into the concentrating compartments 15 as the concentrated water in a direction from a side near an outlet for the deionized water toward a side near an inlet for the raw water of the desalting compartments 16. At least a part of concentrated water flowing out of the concentrating compartments 15 is discharged out of a circulatory system.
Owner:KURITA WATER INDUSTRIES LTD

Electrodeionization (EDI) method and system dispensing with ion exchange membranes

ActiveCN102153166AOvercome problems such as the formation of hydroxide precipitatesSimple structureWater contaminantsWater/sewage treatment by ion-exchangeHigh-voltage direct currentMembrane surface
The invention discloses an electrodeionization (EDI) method and system dispensing with ion exchange membranes. The system is characterized in that porous water distribution plates, top electrodes, ion exchange resins, bottom electrodes and porous floating blocks with density less than that of water are placed in an insulating cavity from top to bottom in sequence; a top cover and the upper ends of cylindrical shells are sealed by upper seal rings; a bottom cover and the lower ends of the cylindrical shells are sealed by lower seal rings; the porous water distribution plates and the top electrodes are fixed between the top cover and the end faces of the cylindrical shells; the bottom electrodes are fixed on the porous floating blocks; intermediate seal rings are installed between the porous floating blocks and the cylindrical shells; and the top and bottom electrodes are respectively connected with a high-voltage direct current power supply. The method and the system have the following beneficial effect: the problems of membrane pollution, concentration polarization, scaling, hydroxide precipitates formed on the membrane surfaces when the heavy metal wastewater containing Cu<2+>, Ni<2+> and other ions are treated because the ion exchange membranes are adopted for EDI are solved. The method and the system are suitable for preparation of highly pure water, purification of electroplating rinse wastewater containing heavy metal ions and treatment of water and wastewater aiming at removing the ionic impurities.
Owner:浙江泽众环保科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products