Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

186 results about "Hamming code" patented technology

In telecommunication, Hamming codes are a family of linear error-correcting codes. Hamming codes can detect up to two-bit errors or correct one-bit errors without detection of uncorrected errors. By contrast, the simple parity code cannot correct errors, and can detect only an odd number of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible rate for codes with their block length and minimum distance of three. Richard W. Hamming invented Hamming codes in 1950 as a way of automatically correcting errors introduced by punched card readers. In his original paper, Hamming elaborated his general idea, but specifically focused on the Hamming(7,4) code which adds three parity bits to four bits of data.

Forward error correction encoding for multiple link transmission capatible with 64b/66b scrambling

A Forward Error Correction (FEC) code compatible with the self-synchronized scrambler used by the 64B/66B encoding standard for transmission on Serializer/Deserializer (SerDes) communications channel links. The FEC code allows encoding and decoding to occur before and after scrambling, respectively, so as to preserve the properties of the scrambling operation on the transmitted signal. The code allows the correction of any single transmission error in spite of the multiplication by three of all transmission errors due to the 64B/66B scrambling process. A Hamming code is combined with a Bit Interleaved Parity code of degree n (BIP-n). These two codes provide for protection both for an error anywhere in the maximum length of the packet as well as for an error replicated two or three times by the descrambling process. All single bit errors, whether multiplied or not, have unique syndromes and are therefore easily correctable. In addition, the packet can be transported across multiple serial links for higher bandwidth applications without a degradation of the code efficiency. The Hamming code can be generated from any irreducible polynomial, such as H(x)=x10+x3+1. The BIP code is chosen to be of degree 6 to fit with 64B/66B scrambling polynomial and is represented by B(x)=x6+1.
Owner:IBM CORP

Forward error correction encoding for multiple link transmission compatible with 64B/66B scrambling

A Forward Error Correction (FEC) code compatible with the self-synchronized scrambler used by the 64B / 66B encoding standard for transmission on Serializer / Deserializer (SerDes) communications channel links. The FEC code allows encoding and decoding to occur before and after scrambling, respectively, so as to preserve the properties of the scrambling operation on the transmitted signal. The code allows the correction of any single transmission error in spite of the multiplication by three of all transmission errors due to the 64B / 66B scrambling process. A Hamming code is combined with a Bit Interleaved Parity code of degree n (BIP-n). These two codes provide for protection both for an error anywhere in the maximum length of the packet as well as for an error replicated two or three times by the descrambling process. All single bit errors, whether multiplied or not, have unique syndromes and are therefore easily correctable. In addition, the packet can be transported across multiple serial links for higher bandwidth applications without a degradation of the code efficiency. The Hamming code can be generated from any irreducible polynomial, such as H(x)=x10+x3+1. The BIP code is chosen to be of degree 6 to fit with 64B / 66B scrambling polynomial and is represented by B(x)=x6+1.
Owner:INT BUSINESS MASCH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products