Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

246 results about "Laser crystallization" patented technology

Laser thin film poly-silicon annealing system

A gas discharge laser crystallization apparatus and method for performing a transformation of a crystal makeup or orientation in a film on a workpiece is disclosed, which may comprise a master oscillator power amplifier MOPA or power oscillator power amplifier configured XeF laser system producing a laser output light pulse beam at a high repetition rate and high power with a pulse to pulse dose control; an optical system producing an elongated thin pulsed working beam from the laser output light pulse beam. The apparatus may further comprise the laser system is configured as a POPA laser system and further comprising: relay optics operative to direct a first output laser light pulse beam from a first laser PO unit into a second laser PA unit; and, a timing and control module timing the creation of a gas discharge in the first and second laser units within plus or minus 3 ns, to produce the a second laser output light pulse beam as an amplification of the first laser output light pulse beam. The system may comprise divergence control in the oscillator laser unit. Divergence control may comprise an unstable resonator arrangement. The system may further comprise a beam pointing control mechanism intermediate the laser and the workpiece and a beam position control mechanism intermediate the laser and the workpiece. Beam parameter metrology may provide active feedback control to the beam pointing mechanism and active feedback control to the beam position control mechanism.
Owner:CYMER INC

Laser thin film poly-silicon annealing system

A gas discharge laser crystallization apparatus and method for performing a transformation of a crystal makeup or orientation in a film on a workpiece is disclosed, which may comprise a master oscillator power amplifier MOPA or power oscillator power amplifier configured XeF laser system producing a laser output light pulse beam at a high repetition rate and high power with a pulse to pulse dose control; an optical system producing an elongated thin pulsed working beam from the laser output light pulse beam. The apparatus may further comprise the laser system is configured as a POPA laser system and further comprising: relay optics operative to direct a first output laser light pulse beam from a first laser PO unit into a second laser PA unit; and, a timing and control module timing the creation of a gas discharge in the first and second laser units within plus or minus 3 ns, to produce the a second laser output light pulse beam as an amplification of the first laser output light pulse beam. The system may comprise divergence control in the oscillator laser unit. Divergence control may comprise an unstable resonator arrangement. The system may further comprise a beam pointing control mechanism intermediate the laser and the workpiece and a beam position control mechanism intermediate the laser and the workpiece. Beam parameter metrology may provide active feedback control to the beam pointing mechanism and active feedback control to the beam position control mechanism.
Owner:CYMER INC

Process and system for laser crystallization processing of film regions on a substrate to provide substantial uniformity within arears in such regions and edge areas thereof, and a structure of film regions

A process and system for processing a thin film sample, as well as the thin film structure are provided. In particular, a beam generator can be controlled to emit successive irradiation beam pulses at a predetermined repetition rate. Each irradiation beam pulse may be masked to define a first plurality of beamlets and a second plurality of beamlets. The first and second plurality of beamlets of each of the irradiation pulses being provided for impinging the film sample and having an intensity which is sufficient to at least partially melt irradiated portions of the section of the film sample. A particular portion of the section of the film sample is irradiated with the first beamlets of a first pulse of the irradiated beam pulses to melt first areas of the particular portion, the first areas being at least partially melted, leaving first unirradiated regions between respective adjacent ones of the first areas, and being allowed to resolidify and crystallize. After the irradiation of the particular portion with the first beamlets, the particular portion is again irradiated with the second beamlets of a second pulse of the irradiated beam pulses to melt second areas of the particular portion, the second areas being at least partially melted, leaving second unirradiated regions between respective adjacent ones of the second areas, and being allowed to resolidify and crystallize. The first irradiated and re-solidified areas and the second irradiated and re-solidified areas are intermingled with one another within the section of the film sample. In addition, the first areas correspond to first pixels, and the second areas correspond to second pixels.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK

Very high energy, high stability gas discharge laser surface treatment system

A gas discharge laser crystallization apparatus and method for performing a transformation of a crystal makeup or orientation in the substrate of a workpiece is disclosed which may comprise, a multichamber laser system comprising, a first laser unit comprising, a first and second gas discharge chamber; each with a pair of elongated spaced apart opposing electrodes contained within the chamber, forming an elongated gas discharge region; a laser gas contained within the chamber comprising a halogen and a noble gas selected to produce laser light at a center wavelength optimized to the crystallization process to be earned out on the workpiece; a power supply module comprising, a DC power source; a first and a second pulse compression and voltage step up circuit connected to the DC power source and connected to the respective electrodes, comprising a multistage fractional step up transformer having a plurality of primary windings connected in series and a single secondary winding passing through each of the plurality of primary windings, and a solid state trigger switch; and a laser timing and control module operative to time the closing of the respective solid state switch based upon operating parameters of the respective first and second pulse compression and voltage step up circuit to effect operation of the first and second laser units as either a POPA configured laser system or a POPO configured laser system to produce a single output laser light pulse beam. As a POPA laser system relay optics may be operative to direct a first output laser light pulse beam from the first laser unit into the second gas discharge chamber; and, the timing and control module operates to create a gas discharge between the second pair of electrodes while the first output laser light pulse beam is transiting the second discharge region, within plus or minus 3 ns and as a POPO, combining optics combine the output beams, and timing creates pulse separation in the combined output a preselected time plus or minus 3 ns.
Owner:CYMER INC

Laser crystallization and selective patterning using multiple beamlets

A process and system for processing a thin film sample, as well as the thin film structure are provided. In particular, a beam generator can be controlled to emit successive irradiation beam pulses at a predetermined repetition rate. Each irradiation beam pulse may be masked to define a first plurality of beamlets and a second plurality of beamlets. The first and second plurality of beamlets of each of the irradiation pulses being provided for impinging the film sample and having an intensity which is sufficient to at least partially melt irradiated portions of the section of the film sample. A particular portion of the section of the film sample is irradiated with the first beamlets of a first pulse of the irradiated beam pulses to melt first areas of the particular portion, the first areas being at least partially melted, leaving first unirradiated regions between respective adjacent ones of the first areas, and being allowed to resolidify and crystallize. After the irradiation of the particular portion with the first beamlets, the particular portion is again irradiated with the second beamlets of a second pulse of the irradiated beam pulses to melt second areas of the particular portion, the second areas being at least partially melted, leaving second unirradiated regions between respective adjacent ones of the second areas, and being allowed to resolidify and crystallize. The first irradiated and re-solidified areas and the second irradiated and re-solidified areas are intermingled with one another within the section of the film sample. In addition, the first areas correspond to first pixels, and the second areas correspond to second pixels.
Owner:THE TRUSTEES OF COLUMBIA UNIV IN THE CITY OF NEW YORK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products