Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

44 results about "Neurturin" patented technology

Neurturin (NRTN) is a protein. Neurturin belongs to the glial cell-line derived neurotrophic factor (GDNF) family of neurotrophic factors, which regulate the survival and function of neurons. Neurturin’s role as a growth factor places it in the TGF-beta (transforming growth factor) subfamily along with its homologs persephin, artemin, and GDNF. It is also considered a trophic factor and critical in the development and growth of neurons in the brain. Neurotrophic factors like neurturin have been tested in several clinical trial setting for the potential treatment of neurodegenerative diseases, specifically Parkinsons Disease.

Method for preparing tissue engineering spinal cords by using mesenchymal stem cells derived from dermis

The invention discloses a method for preparing tissue engineering spinal cords by using mesenchymal stem cells derived from dermis, which comprises the following steps of 1) separating dMSCs, and carrying out passage on the dMSCs so as to obtain dMSCs primary cells; 2) moving the dMSCs primary cells obtained through separating to an amplification culture medium so as to carry out amplification; and 3) dropwise adding an engineering spinal cord saturated water solution into a physiological saline solution containing deep nerve nutriments, retinoic acid and Neuregulin, standing the obtained mixture, carrying out gradient alcohol dehydration on the mixture, and carrying out vacuum drying on the mixture; and infecting the dMSCs subjected to amplification by using a brain-derived neurenergen adenovirus expression vector, and inoculating cells to an engineering spinal cord material for culturing. In the method, tissue engineering spinal cords can effectively promote cell proliferation; and the differentiation rates of the tissue engineering spinal cords to nerve cells and oligodendroglia cells are respectively about 4.8% and 1.5% which are far higher than those of pure scaffold materials (the differentiation rates of pure scaffold materials to nerve cells and oligodendroglia cells are respectively 1.8% and 0.5%).
Owner:ARMY MEDICAL UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products