Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

135 results about "Polymer optical waveguide" patented technology

Silicon dioxide and polymer combined and integrated optical waveguide type thermal-optical modulator

ActiveCN103941428AMake up for the defect of low thermo-optic coefficientCompact structureNon-linear opticsPolymer optical waveguideOptical power
The invention discloses a silicon dioxide and polymer combined and integrated optical waveguide type thermal-optical modulator. The thermal-optical modulator comprises an input waveguide, an input connecting waveguide, a 1*2 optical power splitter, a first tapered waveguide, a transmission arm, a second tapered waveguide, a 2*1 combiner, an output connecting waveguide and an output waveguide. Input light passes through the input waveguide and is connected with one end of the 1*2 optical power splitter through the input connecting waveguide, the 1*2 optical power splitter generates interference, and two split light beams with the ratio of 1:1 are obtained. One end of the 1*2 optical power splitter is connected with one end of the transmission arm through the first tapered waveguide, the other end of the transmission arm is connected with one end of the 2*1 combiner through the second tapered waveguide, and the other end of the 2*1 combiner is connected with the output waveguide through the output connecting waveguide. The thermal-optical modulator has the advantages of being compact in structure, easy to manufacture and insensitive to wave length; meanwhile, the manufacturing process of polymer optical waveguides is simple, and therefore the process difficulty of the thermal-optical modulator is lowered.
Owner:ZHEJIANG UNIV

Integrated optical fiber gyroscope chip based on surface plasmon polariton waveguide

An integrated optical fiber gyroscope chip based on surface Plasmon Polariton waveguide is an integrated optical fiber gyroscope chip in which optical signal is transmitted through the surface Plasmon Polariton waveguide and the polymer optical waveguide which are connected with each other, and it is used in the optical fiber gyroscope field. From the input end to the output end, the optical fiber gyroscope chip sequentially has: an input waveguide (1) and the third output waveguide (7), a directional coupler (2), a symmetrical triple waveguide splitter (3), the first output waveguide (61) and the second output waveguide (62), wherein the input waveguide (1), the first output waveguide (61), the second output waveguide (62) and the third output waveguide (7) are polymer optical waveguides, but the directional coupler (2) and the symmetrical triple waveguide splitter (3) are made from the surface Plasmon Polariton waveguide. The chip utilizes the transmission characteristics of the surface Plasmon Polariton waveguide to realize the single polarization of long-distance transmission of the optical signal, and directly modulates the surface Plasmon Polariton waveguide core layer, and removes influence of the leakage light to the precision of the fiber gyroscope through the specific structure.
Owner:SOUTHEAST UNIV

Flow velocity sensor based on polymer optical waveguide

ActiveCN106645793AOptical waveguide is flexibleLarge signal outputFluid speed measurementManufacturing technologyPolymer optical waveguide
The invention discloses a flow velocity sensor based on polymer optical waveguide, belonging to the technical field of flow field sensors and manufacturing thereof. The flow velocity sensor can be used for high-precision detection and feedback control of the surface flow field of an aircraft. The flow velocity sensor comprises a laser light source and a driving circuit, a polymer optical waveguide, an optical fiber, a position sensitive detector, a signal processing system and a fixed casing; the polymer optical waveguide and the optical fiber output end are fixed and directly coupled, the optical fiber input end is connected with the laser light source and the driving circuit, the polymer optical waveguide, the optical fiber, and the laser light source and the driving circuit are fixed to one side of the fixed casing, the position sensitive detector and the signal processing system are connected and are fixed to the opposite side of the fixed casing, and the top of the fixed casing is provided with a through hole. The polymer optical waveguide is good in flexibility and can transmit optical signals, the small flexural deflection of the polymer caused by the small change of the flow field can be amplified on the position sensitive detector after being subjected to optical path transmission, so that the flow velocity of the flow filed can be measured in high precision.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products