Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

161 results about "Polymer waveguide" patented technology

Polymer waveguide fabrication process

The invention relates to a process a process for forming single-mode, organic waveguides employing organic polymeric materials. The process reduces dissolved and gaseous oxygen content to very low quantities, resulting in production of waveguides having superior properties and manufacturability. Also provided is a process for preventing loss of light due to cores having flared ends. A waveguide is produced by sequentially a layer of a liquid, photosensitive buffer and clad composition to a surface of a substrate; deoxygenating under vacuum; overall exposing under an inert gas actinic radiation to partially polymerize the compositions below a full curing. Coating a photosensitive core composition to the clad composition; deoxygenating under vacuum, covering with an inert gas atmosphere; positioning a photomask above, but not in contact with the core layer; imagewise exposing the core through a photomask pattern to actinic radiation to partially polymerize the core composition; developing core; coating a photosensitive overclad composition over the image areas of the core composition; deoxygenating under vacuum; overall exposing the overclad composition, under inert gas to actinic radiation to substantially fully cure the optional buffer composition, the underclad composition, the core composition and the clad composition.
Owner:ENABLENCE TECH USA

Optical fiber and silicon waveguide coupling structure based on polymer waveguides and manufacturing method thereof

The invention discloses an optical fiber and silicon waveguide coupling structure based on polymer waveguides and a manufacturing method of the optical fiber and silicon waveguide coupling structure. The optical fiber and silicon waveguide coupling structure based on the polymer waveguides comprises an SOI wafer and an optical fiber arranged on the SOI wafer, the polymer straight waveguide and the polymer tapered waveguide are arranged on a buried oxide layer of the SOI wafer in sequence from right to left, the narrower end of the polymer tapered waveguide is connected with the polymer straight waveguide, and the wider end of the polymer tapered waveguide is aligned with a fiber core of the optical fiber; the silicon waveguide is arranged on upper layer silicon, the left end of the silicon waveguide is a back taper structure with a gradually changing width, the right end of the silicon waveguide is of a straight silicon waveguide back taper structure, part of the straight silicon waveguide wrapped in the polymer straight waveguide, and other parts of the straight silicon waveguide is covered with a silicon dioxide covering layer; a V-shaped groove is formed in the top surface of the left end of the SOI wafer, the silicon dioxide covering layer, the upper layer silicon and the buried oxide layer sequentially penetrate through the V-shaped groove in the depth direction, and the bottom end of the V-shaped groove is located at substrate silicon; the optical fiber is fixed in the V-shaped groove. The optical fiber and silicon waveguide coupling structure based on the polymer waveguides and the manufacturing method of the optical fiber and silicon waveguide coupling structure not only improve coupling efficiency, reduce process complexity and guarantee the reliability of the optical fiber coupling structure.
Owner:WUHAN POST & TELECOMM RES INST CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products