Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2252 results about "Coupling efficiency" patented technology

Coupling efficiency - Computer Definition. The efficiency with which a light source physically connects to an optical fiber. The more precisely the light source can inject a tightly focused signal directly into the inner core of a fiber, the stronger the resulting signal and the better the signal performs over a distance.

Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates

Embodiments of the present disclosure generally relate to methods for conditioning an interior wall surface of a remote plasma generator. In one embodiment, a method for processing a substrate is provided. The method includes exposing an interior wall surface of a remote plasma source to a conditioning gas that is in excited state to passivate the interior wall surface of the remote plasma source, wherein the remote plasma source is coupled through a conduit to a processing chamber in which a substrate is disposed, and the conditioning gas comprises an oxygen-containing gas, a nitrogen-containing gas, or a combination thereof. The method has been observed to be able to improve dissociation / recombination rate and plasma coupling efficiency in the processing chamber, and therefore provides repeatable and stable plasma source performance from wafer to wafer.
Owner:APPLIED MATERIALS INC

Aperiodic dielectric multilayer stack

A structure is provided that includes an aperiodic dielectric stack. The structure may include a substrate, a device disposed over the substrate, and a first dielectric stack disposed between the substrate and the device. The first dielectric stack includes a plurality of layers comprising a first dielectric material, wherein at least two of the layers comprising a first dielectric material have substantially different thicknesses, as well as a plurality of layers comprising a second dielectric material. The average outcoupling efficiency into air of the device over a bandwidth of at least 300 nm may be at least 40% greater than that of an otherwise identical device disposed in a structure without the first dielectric stack. The substrate may have a treated surface such that light that may otherwise be waveguided in the substrate is outcoupled into air, and the average outcoupling efficiency into air of the device over a bandwidth of at least 300 nm may be at least 10% greater than that of an otherwise identical device disposed in a structure without the first dielectric stack. The structure may include an optical cavity defined by a first end layer and a second end layer, where the first end layer further comprising a first dielectric stack having a plurality of layers comprising a first dielectric material, wherein at least two of the layers comprising a first dielectric material have substantially different thicknesses, and a plurality of layers comprising a second dielectric material. An optoelectronic device having a first active layer may be disposed within the optical cavity.
Owner:THE TRUSTEES FOR PRINCETON UNIV

EAMR head having improved optical coupling efficiency

A method and system provide an EAMR transducer having an air-bearing surface (ABS) that resides near a media during use. The EAMR transducer includes a write pole, coil(s), a near field transducer (NFT), a waveguide, and a reflective grating. The write pole writes to a region of the media. The coil(s) energize the write pole. The NFT is proximate to the ABS and focuses the energy onto the media. The waveguide is configured to direct the energy from the laser toward the NFT at an incident angle with respect to the ABS. A first portion of the energy reflects off of the ABS at a reflected angle. The reflective grating receives the first portion of the energy at the reflected angle from the ABS and reflects a second portion of the energy toward the ABS. The NFT resides between at least part of the waveguide and the reflective grating.
Owner:WESTERN DIGITAL TECH INC

Light guide and light-output device

A light guide (11; 101; 111) comprising first and second oppositely arranged faces, an in-coupling portion (13a-f) for in-coupling of light from a light-source (12a-f; 95a-f; 102; 106a-c; 112a-f), and an out-coupling portion (15a-f; 103; 113a-f) located adjacent to the in-coupling portion (13a-f). The out-coupling portion (15a-f; 103; 113a-f) is configured to out-couple a primary light beam having a direction of propagation directed from a position in the in-coupling portion (13a-f) with a lower out-coupling efficiency than a secondary light beam having a direction of propagation directed from a position in the light guide (11; 101; 111) outside the in-coupling portion (13a-f). In this manner, a good mixing of light in the light guide can be achieved without imposing any particular requirements on the collimation of the in-coupled light.
Owner:SIGNIFY HLDG BV

OLEDs having increased external electroluminescence quantum efficiencies

OLED devices are disclosed having increased external electroluminescence quantum efficiencies, i.e., increased “out-coupling” efficiencies. OLED devices that have increased out-coupling efficiencies and that are also protected from environmental elements such as moisture and oxygen are also disclosed. The OLED device of the present invention comprises a substrate; an active region positioned on the substrate, wherein the active region comprises an anode layer, a cathode layer and a light-emitting layer disposed between the anode layer and the cathode layer; and a polymeric layer disposed (a) over the active region, (b) under the active region or (c) both over and under the active region. The polymeric layer has microparticles incorporated therein, and the microparticles are effective to increase the out-coupling efficiency of the OLED. In one embodiment, the OLED device comprises a composite barrier layer and the microparticles are incorporated in a polymeric planarizing sublayer of the composite barrier layer. The composite barrier layer in this embodiment also protects the OLED from damage caused by environmental elements such as moisture and / or oxygen.
Owner:UNIVERSAL DISPLAY

Reflective light coupler

An illumination system has individual light emitting diodes (LEDs) that are optically coupled via reflective couplers to respective optical fibers. The respective optical fibers may then be bundled. The shape of the reflective coupler may be selected to increase the coupling efficiency between the LED and its optical fiber. The reflective coupler may be formed as an aperture through a sheet, having a first shape at the input side and a second shape, different form the first shape, at the second side. The reflective coupler may be formed as an aperture through a body, where at least a first portion of the interior surface of the aperture conforms to a two-dimensional (2-D) surface and at least a second portion of the interior surface conforms to a three-dimensional (3-D) surface.
Owner:3M INNOVATIVE PROPERTIES CO

Optimized media grain packing fraction for bit patterned magnetic recording media

InactiveUS20050157597A1Optimizes optical coupling efficiencyOptimizes medium grain packing fractionCombination recordingNanoinformaticsEngineeringOptical coupling
A bit patterned magnetic recording medium for use in HAMR, which is optimized for optical coupling efficiencies and improved magnetic read-back coupling. The medium comprises bit-patterned magnetic recording elements, each corresponding to a magnetic data bit, and each comprising a cluster of discrete and separated magnetic grains. The desired packing fraction may be obtained by defining the number of grains within a bit, while bit-patterning provides efficient optical transmission. The grains have an effective packing fraction that enhances magnetic read-back signals, and the bits are distributed in a pattern having a packing fraction that enhances the optical coupling efficiency. The bits and / or the grains may be substantially thermally and optically isolated.
Owner:SEAGATE TECH LLC

Illumination system using a plurality of light sources

An illumination system includes a plurality of radiation generating sources, such as LED dies. A corresponding plurality of optical waveguides is also provided, with each waveguide having a first and a second end, with each first end being in optical communication with the corresponding LED die. An array of corresponding passive optical elements is interposed between the plurality of LED dies and the corresponding first ends of the plurality of optical waveguides. The illumination system provides for substantially high light coupling efficiency and an incoherent light output that can appear to the human observer as arising from a single point of light. In addition, the light can be output remotely at one or more locations and in one or more directions.
Owner:3M INNOVATIVE PROPERTIES CO

Amidites and Methods of Rna Synthesis

The present invention is directed to amidites useful in the synthesis of oligonucleotides comprising at least one RN moiety, and to methods of using such amidites in the synthesis of such oligonucleotides. The inventive amidites possess surprising coupling efficiency as compared to prior art amidites, while providing convenient intermediates in the synthesis of oligonucleotides possessing at least one free 2′-OH moiety.
Owner:IONIS PHARMA INC

Multi-wavelength optical transceiver subassembly module

Disclosed is an optical transceiver subassembly module for multiplexing and demultiplexing a plurality of channels of different wavelengths. The optical subassembly module includes a transmitter optical subassembly (TOSA) and a receiver optical subassembly (ROSA). For a TOSA, the optical signals emitted by four laser diodes of different wavelengths are combined into a multiplexed optical signal, through respective thin film filters and lenses, which is then coupled onto an optical fiber after passing through a focusing lens. For a ROSA, the input optical signal on the receiver end of the optical fiber is separated into multiple optical wavelength signals, through respective thin film filters and lenses, which are then registered by respective photo detectors. This optical subassembly module with compact star-shaped optics design, active and passive alignments is able to attain high coupling efficiency between optical signals and the optical fiber.
Owner:NAT TAIWAN UNIV

Resin holographic waveguide lens and preparation method thereof and three-dimensional display device

ActiveCN106842397AGood image couplingImprove efficiencyDiffraction gratingsPolymerGood image
The invention discloses resin holographic waveguide lenses and a preparation method thereof, and a three-dimensional display device constructed thereof. The resin holographic waveguide lenses comprise one piece, two pieces, and three pieces or three pieces above resin holographic waveguide lens units, the resin holographic wave guide lens unit comprises a polymer lining and a functionality film arranged on the polymer lining, a functionality region is arranged on the functionality film, and a Nano diffraction grating is arranged within the functionality region. According to the resin holographic waveguide lenses, the lenses have good image coupling and coupling efficiency, under the condition of using Nano diffraction grating to guarantee enough field view and observation area, the lenses have the advantages of low copy cost and high fidelity factor, the resin material prepared resin holographic waveguide lenses can be formed by impact and does not require regular lens processing.
Owner:SVG TECH GRP CO LTD +1

Waveguide photodetector device and manufacturing method thereof

Embodiments of the present invention describe a waveguide-based photodetector device and its methods of fabrication. The waveguide photodetector device comprises a substrate having a cladding structure formed thereon. A waveguide element for receiving optical signals is disposed within the cladding structure. A portion of the waveguide element is encapsulated by a photodetector element that detects the optical signal received by the waveguide element and generates an electrical signal based on the optical signal. Encapsulating the waveguide element in the photodetector element improves coupling efficiency and enables a waveguide photodetector device with higher speeds and higher responsivity.
Owner:INTEL CORP

Hermetically sealed optical subassembly

An optical subassembly includes a high speed ceramic substrate having cavity containing an array of photodetectors, and a glass or silicon window for covering the cavity and forming a hermetic seal. A retainer is attached to the window for direct or indirect attachment to a fiber. The hermetic seal protects the device from moisture and other environmental conditions. The window has an index of refraction higher than air that effectively increases the optical pathlength sufficient while maintaining an acceptable coupling efficiency between the optoelectronic device and a fiber. This provides increased spacing within which to place and interconnect components within the cavity on the substrate. In alternate embodiments, the window is decoupled from direct contact with the retainer via a metal frame or ring. Decoupling the window from direct contact with the retainer helps prevent cracking of the window due to mismatches in the coefficients of thermal expansion between the window and the retainer.
Owner:OPTICAL COMM PRODS

Using telemetry coupling as a surrogate for recharger coupling

Techniques for using telemetry signal strength for positioning a primary recharge coil of a recharging unit at a location proximate to an Implantable Medical Device (IMD) in preparation to recharge a rechargeable power source of the IMD are disclosed. An antenna of the recharging unit is positioned proximate to the IMD, a telemetry session is initiated between the two devices, and a value indicative of the telemetry signal strength is obtained. Using a known correspondence between telemetry signal strength and recharge coupling efficiency for the IMD / recharging unit pair, the telemetry signal strength value is used to determine whether adequate recharge coupling may be achieved between the pair of devices. If so, a recharge session may be established. Otherwise, the antenna is repositioned and the process is repeated. The correspondence between telemetry signal strength and recharge coupling efficiency for the device pair may be developed empirically or using modeling.
Owner:MEDTRONIC INC

Recessed Germanium (Ge) Diode

A photodiode is formed in a recessed germanium (Ge) region in a silicon (Si) substrate. The Ge region may be fabricated by etching a hole through a passivation layer on the Si substrate and into the Si substrate and then growing Ge in the hole by a selective epitaxial process. The Ge appears to grow better selectively in the hole than on a Si or oxide surface. The Ge may grow up some or all of the passivation sidewall of the hole to conformally fill the hole and produce a recessed Ge region that is approximately flush with the surface of the substrate, without characteristic slanted sides of a mesa. The hole may be etched deep enough so the photodiode is thick enough to obtain good coupling efficiencies to vertical, free-space light entering the photodiode.
Owner:ANALOG DEVICES INC

Optical module capable of improving coupling efficiency and suppressing fluctuation of coupling loss and its manufacturing method

In an optical module, a package includes an array of first optical elements and at least one first positioning member. A microlens array plate including microlenses is fixed to the package, so that each of the microlenses corresponds to one of the first optical elements. An optical array connector mounts second optical elements thereon. The optical array connector has a light path bending portion for bending light paths of the second optical elements and at least one second positioning member. The optical array connector abuts against the package by aligning the second positioning member to the first positioning member so that each of the first optical elements corresponds to one of the second optical elements, A clamping member clamps the optical, array connector to the package.
Owner:NEC CORP

Light-emitting device having optical resonance layer

Provided is a light-emitting device which has a simple structure and can be manufactured in a simple process, has increased light coupling efficiency and brightness, and can reduce adverse effects of optical resonance on a view angle and emission spectrum. The light-emitting device includes a substrate; a light-emitting diode formed on the substrate; and an optical resonance layer formed outside the light-emitting diode that induces resonance of light emitted from the light-emitting diode.
Owner:SAMSUNG DISPLAY CO LTD

Organic Light Emitting Display Device

An organic light emitting display device comprises: a substrate; a plurality of thin film transistors (TFTs) formed on a first surface of the substrate; a passivation layer covering the plurality of TFTs; a plurality of first pixel electrodes formed on the passivation layer and respectively electrically connected to the plurality of TFTs, and overlapping with the plurality of TFTs so as to cover the plurality of TFTs, and including a reflection layer formed of a light-reflecting conductive material; a second pixel electrode formed of a light-transmitting conductive material and disposed on the passivation layer so as to be electrically connected to the plurality of first pixel electrodes; an opposite electrode formed such that light is transmitted or reflected therethrough, and disposed opposite the plurality of first pixel electrodes and the second pixel electrode; and an organic layer interposed between the plurality of first pixel electrodes and the second pixel electrode, and including an emission layer. Accordingly, transmittivity of the organic light emitting display device is increased, and optical outcoupling efficiency of the organic light emitting display device is also increased during double-sided emission.
Owner:SAMSUNG DISPLAY CO LTD

Method and system for operating capacitive membrane ultrasonic transducers

A capacitive membrane ultrasonic transducer system and method of operation is described. The transducers are operated in the collapsed mode. In this mode the membrane is first subjected to a voltage higher than the collapse voltage, therefore initially collapsing the membrane onto the substrate. Then, a bias voltage is applied having an amplitude between the collapse and snapback voltages. At this bias voltage, the center of the membrane still contacts the substrate. By applying driving AC voltage or voltage pulses harmonic membrane motion is obtained in a circular ring concentric to the center. In this regime, between collapse and snapback, the cMUT has a higher eletromechanical coupling efficiency than it has when it is operated in the conventional pre-collapse mode.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom

The present invention relates to radiation, preferably light emitting, devices with a high radiation emission efficiency and to fabricating these as small devices in an array of such devices. In one embodiment, the emitting devices can be placed in dense arrays. In another embodiment, outcoupling efficiency of the devices is improved, which leads to a reduced power consumption for a given radiation output power. In another embodiment, the speed of the radiation is increased, hence the serial bandwidth per optical channel is increased. The invention further relates to light emitting devices that exhibit uniform radiation emission characteristics. The light emitting devices (diodes, LEDs) of the present invention can be used for applications wherein two-dimensional LED arrays, particularly low-power arrays, are useful, such as in display technology. Active matrix displays relying on liquid crystals (e.g. integrated on CMOS circuitry) could be replaced by LED arrays. Dense and bright one-dimensional LED arrays are useful for example for printing and copying. Also for single LED applications it is important to have a maximum of photons escaping from the light emitting surface. The intensity of light per unit area (the brightness) is larger, and this is useful in many applications. Furthermore, the packaging cost can be reduced. In order to achieve a large global efficiency, many conventional LEDs need an elaborate package that includes a cavity with mirrors, because the light is emitted from more than one surface of the LED.
Owner:SIGNIFY HLDG BV

Total-internal-reflection fiber optic interface modules with different optical paths and assemblies using same

Fiber optic interface modules and assemblies using same are disclosed, wherein the module includes first and second lenses formed therein that utilize total-internal reflection within the module body. The first and second lenses define first and second optical paths of different lengths. The module may operably support first and second optical fibers so that they are optically coupled to surfaces of the first and second lenses. The first and second lenses are designed to provide predetermined tolerances for lateral offsets relative to first and second active photo-devices while maintaining respective first and second coupling efficiencies between the active photo-devices and the corresponding first and second optical fibers.
Owner:CORNING OPTICAL COMM LLC

Aperiodic dielectric multilayer stack

A structure is provided that includes an aperiodic dielectric stack. The structure may include a substrate, a device disposed over the substrate, and a first dielectric stack disposed between the substrate and the device. The first dielectric stack includes a plurality of layers comprising a first dielectric material, wherein at least two of the layers comprising a first dielectric material have substantially different thicknesses, as well as a plurality of layers comprising a second dielectric material. The average outcoupling efficiency into air of the device over a bandwidth of at least 300 nm may be at least 40% greater than that of an otherwise identical device disposed in a structure without the first dielectric stack.
Owner:THE TRUSTEES FOR PRINCETON UNIV

Self-compensating radiation sensor with wide dynamic range

A radiation sensing method and device that is used to measure physical properties of materials over a wide dynamic range. The sensor (20) comprises multiple radiation sources and multiple detectors at multiple separation distances. The detected signals from the different sources are separated and then combined mathematically in a manner such that the combination is self-compensated for both component drift and changes in radiation coupling efficiency between the source or detector and the material of interest. In a preferred embodiment, the biomass in a liquid cell culture (54) is measured with high accuracy over a wide dynamic range using optical wavelength radiation. The measurement can be made with the sensor external to the liquid culture container in a manner that is compensated for the thickness of the container window (50).
Owner:DEBRECZENY MARTIN PAUL +2

Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements

Devices for producing localized surface plasmon resonances are described having a plasmonic resonator and a photonic structure electromagnetically coupled to the plasmonic resonator. The device can include a hybrid photonic plasmonic resonator that contains plasmonic and photonic resonators, and are optionally coupled to a photonic waveguide, or a plasmonic resonator coupled directly to a photonic waveguide. The plasmonic resonator can be one or more nanoparticles. The devices can produce substantial increases in coupling efficiencies and sensitivity for use in several applications, including SERS and refractive index sensing.
Owner:GEORGIA TECH RES CORP

Multi-channel, self-calibrating fiber-coupled raman spectrometers including diagnostic and safety features

ActiveUS20050162646A1Facilitates quasi-simultaneousFacilitates sequential calibration/data acquisitionRadiation pyrometrySpectrum investigationCircular discData acquisition
A multi-channel, reconfigurable fiber-coupled Raman instrument uses fiber optic switches for laser and calibration light routing to facilitate automated calibration, diagnosis and operational safety. The system allows wavelength axis calibration on all channels; laser wavelength calibration (including multiple and / or backup laser options); fiber coupling optimization; fault detection / diagnosis; and CCD camera binning setup. In the preferred embodiment, dedicated calibration channels surround data channels on a 2-dimensional CCD dispersed slit image implemented using a unique cabling architecture. This “over / under” calibration interpolation approach facilitates quasi-simultaneous or sequential calibration / data acquisitions. CCD binning between sequential calibration and data acquisitions enables higher density multi-channel operation with tilted images based upon a multiplexed grating configuration. A diamond sample is used as a Raman shift reference for laser calibration, preferably in the form of a small disc sampled with an edge-illuminating probe using two unfiltered fibers. Detection of beam transmitted through the diamond reference is also used to optimize laser coupling efficiency with motion servos. An “intrinsically safe” laser interlock circuit also serves as current source for probe head “laser on” diode indicator. The integrity of key components is monitored through strategically placed photodiodes positioned, for example, at fiber bends to detect light leakage from bent fiber as verification of commanded laser path through fiber switches and at neon and halogen lamp locations to verify lamp operation. The optical switches used for calibration may also be configured for use as a laser shutter.
Owner:ENDRESS + HAUSER OPTICAL ANALYSIS INC

Light emitting device with an incorporated optical wavelight layer

A self light emitting display device having high level of the external coupling efficiency and high grade image presentation as no optical cross-talk or blur can be obtained by a new light-emitting element. The device is constructed as follows. A plurality of picture elements, each of which picture elements has an organic layer composing light emitting areas, a transparent electrode and a reflective electrodes, are formed on a substrate. Between the picture elements, a bank which has a tilted reflective surface is formed so that the light emitting area is surrounded by the bank wherein the transparent optical waveguide layer is formed as optically isolated for each of the picture elements.
Owner:SAMSUNG DISPLAY CO LTD

External grating structures for interfacing wavelength-division-multiplexed optical sources with thin optical waveguides

A coupling arrangement for allowing multiple wavelengths to be coupled into and out of a relatively thin silicon optical waveguide layer utilizes a diffractive optical element, in the form of a volume phase grating, in combination with a prism coupling structure. The diffractive optical element is formed to comprise a predetermined modulation index sufficient to diffract the various wavelengths through angles associated with improving the coupling efficiency of each wavelength into the silicon waveguide. The diffractive optical element may be formed as a separate element, or formed as an integral part of the coupling facet of the prism coupler.
Owner:CISCO TECH INC

Grating coupler and application thereof in polarization and wave length beam splitting

The invention discloses a grating coupler, which sequentially comprises an upper cladding, a grating layer, a wave guide layer and a lower cladding from top to bottom. The grating layer adopts a binary blazed grating that is a one-dimension binary blazed grating or a two-dimension binary blazed grating. The binary blazed grating coupler provided by the invention can obtain high coupling efficiency and realize complete vertical coupling; besides, the preparation is easy. By adjusting a grating parameter, the grating coupler realizes that incident light is respectively coupled in different wave guides according to different polarization states or wave lengths, thus offering effective ways for polarization beam splitting, wavelength division multiplex, etc.
Owner:PEKING UNIV

Flat panel display device

A flat panel display device. The device includes a plurality of self-luminant devices, each of which includes at least a light emitting layer, formed on every pixel, and a lens sheet having a plurality of condensing lenses that correspond to the self-luminant devices and direct the light emitted from the self-luminant devices toward a predetermined direction. A distance between the light emitting layer and an exterior portion of the condensing lens in the direction of propagation of the light is between 50 and 500 microns so as not to overlap images of neighboring sub-pixels, that are expanded by the condensing lenses. Therefore, a lowering of image sharpness that is caused by the condensing lenses can be prevented, while a light coupling efficiency and a brightness are improved.
Owner:SAMSUNG DISPLAY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products