Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2246 results about "Coupling efficiency" patented technology

Coupling efficiency - Computer Definition. The efficiency with which a light source physically connects to an optical fiber. The more precisely the light source can inject a tightly focused signal directly into the inner core of a fiber, the stronger the resulting signal and the better the signal performs over a distance.

Aperiodic dielectric multilayer stack

A structure is provided that includes an aperiodic dielectric stack. The structure may include a substrate, a device disposed over the substrate, and a first dielectric stack disposed between the substrate and the device. The first dielectric stack includes a plurality of layers comprising a first dielectric material, wherein at least two of the layers comprising a first dielectric material have substantially different thicknesses, as well as a plurality of layers comprising a second dielectric material. The average outcoupling efficiency into air of the device over a bandwidth of at least 300 nm may be at least 40% greater than that of an otherwise identical device disposed in a structure without the first dielectric stack. The substrate may have a treated surface such that light that may otherwise be waveguided in the substrate is outcoupled into air, and the average outcoupling efficiency into air of the device over a bandwidth of at least 300 nm may be at least 10% greater than that of an otherwise identical device disposed in a structure without the first dielectric stack. The structure may include an optical cavity defined by a first end layer and a second end layer, where the first end layer further comprising a first dielectric stack having a plurality of layers comprising a first dielectric material, wherein at least two of the layers comprising a first dielectric material have substantially different thicknesses, and a plurality of layers comprising a second dielectric material. An optoelectronic device having a first active layer may be disposed within the optical cavity.
Owner:THE TRUSTEES FOR PRINCETON UNIV

Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom

The present invention relates to radiation, preferably light emitting, devices with a high radiation emission efficiency and to fabricating these as small devices in an array of such devices. In one embodiment, the emitting devices can be placed in dense arrays. In another embodiment, outcoupling efficiency of the devices is improved, which leads to a reduced power consumption for a given radiation output power. In another embodiment, the speed of the radiation is increased, hence the serial bandwidth per optical channel is increased. The invention further relates to light emitting devices that exhibit uniform radiation emission characteristics. The light emitting devices (diodes, LEDs) of the present invention can be used for applications wherein two-dimensional LED arrays, particularly low-power arrays, are useful, such as in display technology. Active matrix displays relying on liquid crystals (e.g. integrated on CMOS circuitry) could be replaced by LED arrays. Dense and bright one-dimensional LED arrays are useful for example for printing and copying. Also for single LED applications it is important to have a maximum of photons escaping from the light emitting surface. The intensity of light per unit area (the brightness) is larger, and this is useful in many applications. Furthermore, the packaging cost can be reduced. In order to achieve a large global efficiency, many conventional LEDs need an elaborate package that includes a cavity with mirrors, because the light is emitted from more than one surface of the LED.
Owner:SIGNIFY HLDG BV

Multi-channel, self-calibrating fiber-coupled raman spectrometers including diagnostic and safety features

ActiveUS20050162646A1Facilitates quasi-simultaneousFacilitates sequential calibration/data acquisitionRadiation pyrometrySpectrum investigationCircular discData acquisition
A multi-channel, reconfigurable fiber-coupled Raman instrument uses fiber optic switches for laser and calibration light routing to facilitate automated calibration, diagnosis and operational safety. The system allows wavelength axis calibration on all channels; laser wavelength calibration (including multiple and/or backup laser options); fiber coupling optimization; fault detection/diagnosis; and CCD camera binning setup. In the preferred embodiment, dedicated calibration channels surround data channels on a 2-dimensional CCD dispersed slit image implemented using a unique cabling architecture. This “over/under” calibration interpolation approach facilitates quasi-simultaneous or sequential calibration/data acquisitions. CCD binning between sequential calibration and data acquisitions enables higher density multi-channel operation with tilted images based upon a multiplexed grating configuration. A diamond sample is used as a Raman shift reference for laser calibration, preferably in the form of a small disc sampled with an edge-illuminating probe using two unfiltered fibers. Detection of beam transmitted through the diamond reference is also used to optimize laser coupling efficiency with motion servos. An “intrinsically safe” laser interlock circuit also serves as current source for probe head “laser on” diode indicator. The integrity of key components is monitored through strategically placed photodiodes positioned, for example, at fiber bends to detect light leakage from bent fiber as verification of commanded laser path through fiber switches and at neon and halogen lamp locations to verify lamp operation. The optical switches used for calibration may also be configured for use as a laser shutter.
Owner:ENDRESS + HAUSER OPTICAL ANALYSIS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products