Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

196results about How to "Much of light" patented technology

Oversampling pulse oximeter

An oversampling pulse oximeter includes an analog to digital converter with a sampling rate sufficient to take multiple samples per source cycle. In one embodiment, a pulse oximeter (100) includes two more more light sources (102) driven by light source drives (104) in response to drive signals from a digital signal processing unit (116). The source drives (104) may drive the sources (102) to produce a frequency division multiplex signal. The optical signals transmitted by the light sources (102) are transmitted through a patient's appendage (103) and impinge on a detector (106). The detector (106) provides an analog current signal representative of the received optical signals. An amplifier circuit (110) converts the analog current signal to an analog voltage signal in addition to performing a number of other functions. The amplifier circuit (110) outputs an analog voltage signal which is representative of the optical signals from the sources (102). This analog voltage signal is received by a fast A/D converter (112) which samples the analog voltage signal to generate a digital voltage signal which can be processed by the digital signal processing unit (116). The fast A/D converter (112) operates at a rate sufficient to take multiple samples per source cycle and may have a sampling frequency, for example, of over 41 kHz. The digital signal processing unit (116) implements software for averaging the samples over a source cycle for improved measurement consistency, improved signal to noise ratio and reduced A/D converter word length.
Owner:DATEX OHMEDA

Semiconductor light emitting device

A light emitting diode (LED) including a combination of features that enable the LED to produce a high-brightness predetermined radiation pattern. The combination of features enable the LED to function cooler and more reliably at a higher drive currents and elevated ambient temperatures, and therefore emit light of increased brightness, without overheating, and to have a particular radiation pattern. In particular, a surface mount that is capable of operating at high drive currents and high ambient temperatures is disclosed. The LED comprises a surface mount package having a metal lead frame having mass sufficient to provide low thermal resistance, at least one anode contact pad and at least one cathode contact pad. The LED also includes a reflector positioned within the package, a semiconductor die and an optional focusing dome. The semiconductor die comprises a transparent substrate and a semiconductor component and is positioned within the package so that the semiconductor component and the substrate are arranged side-by-side over the reflector (flop-chip). Alternatively, the die is positioned within the package so that the substrate is on top of the semiconductor component (flip-chip). The optional focusing dome is operative to refract light emitted from the semiconductor die and light reflected from the reflector to create a predetermined radiation pattern.
Owner:GELCORE LLC (US)

Element mapping unit, scanning transmission electron microscope, and element mapping method

There is provided an element mapping unit, scanning transmission electron microscope, and element mapping method that enable to acquire an element mapping image very easily. On the scanning transmission electron microscope, the electron beam transmitted through an object to be analyzed enters into the element mapping unit. The electron beam is analyzed of its energy into spectrum by an electron spectrometer and an electron energy loss spectrum is acquired. Because the acceleration voltage data for each element and window data for 2-window method, 3-window method or contrast tuning method are already stored in a database and accordingly the spectrum measurement is carried out immediately even when an element to be analyzed is changed to another, the operator can confirm a two-dimensional element distribution map immediately. Besides, because every electron beam that enters into an energy filter passes through the object point, aberration strain in the electron spectrometer can be minimized and higher energy stability can be achieved. As a result, drift of the electron energy loss spectrum acquired by analyzing the electron beam into spectrum can be minimized and element distribution with higher accuracy can be acquired.
Owner:HITACHI LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products