Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

194results about How to "Increase active area" patented technology

Carbon-based composite electrode material and preparation method thereof, and application of the carbon-based composite electrode material to super capacitor

The invention relates to a carbon-based composite electrode material and a preparation method thereof, and application of the carbon-based composite electrode material to a super capacitor. The electrode material contains a conductive polymer and a carbon-based material. The conductive polymer is attached to a surface of the carbon-based material in a manner of a nanowire array of a conductive polymer, wherein the arrangement of the nanowire array of the conductive polymer is in a good order; besides, a diameter of the nanowire of the nanowire array of the conductive polymer is 40 to 100 nm and a length of the nanowire is 100 to 1500 nm. The carbon-based composite electrode material provide in the invention has a large specific surface area, so that an active area of a conductive polymer is substantially improved and thus high capacitance can be obtained; besides, the carbon-based composite electrode material provide in the invention has a highly ordered nano structure, so that a transmission path of an electrolyte ion is reduced and an internal resistance of an electrode is also reduced; therefore, the ion in an electrode material can be diffused and transmitted conveniently, and thus high power density can be obtained.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA

Poly-pyrrole minisize super capacitor based on MEMS technique and method for manufacturing the same

The invention discloses a polypyrrole minitype super capacitor in the range of the capacitor manufacturing technology based on MEMS technology and the preparation method thereof. The polypyrrole minitype super capacitor adopts the structure that a metal comb two-dimensional plane structure as a current collector is prepared on the surface of the silicon matrix by utilizing the micro-machining technology; a comb-shaped polypyrrole active electrode is prepared on the surface of the current collector by adopting the method of polypyrrole substance being prepared by the electric precipitation method; a layer of gel solid electrolyte is covered on the surface of the comb-shaped polypyrrole electrode and between a positive electrode and a negative electrode; and a layer of polyimide material is covered on the surface of the structure to accomplish the encapsulation of the minitype super capacitor. The MEMS-based manufacturing technology has the characteristic that the process is simple, and is suitable for mass manufacture. The minitype super capacitor has the advantages of small volume, high energy storage and stable performance, and is widely applicable to micro-robot electronic intelligence systems, chemical sensors, battlefield friend-or-foe identification devices, distributed type battlefield sensors and other fields.
Owner:TSINGHUA UNIV

Three dimensional structure micro zinc-nickel battery applying to microsystems and preparation method thereof

The invention discloses a three dimensional structure micro zinc-nickel battery applying to microsystems and a preparation method thereof, which belongs to the micro battery fabrication technique field. The structure of the micro zinc-nickel battery is as follows: preparing gold combdent two dimensional plane structural current collector on the silicon substrate surface by adopting micro processing technique, preparing three dimensional stereo space structural nickel microcolumn anode and zinc microcolumn cathode on the current collector surface, depositing nickel oxide active electrode substance on the nickel microcolumn anode surface, filling and covering a layer of gel-like solid electrolyte between the anode and cathode of the three dimensional stereo space structure, and covering a layer of polyimide material on the battery surface for finishing encapsulation of the micro zinc-nickel battery. The fabrication technique based on microsystems technique is characterized of simple technique, being suitable for batch production and the like. The micro zinc-nickel battery is characterized of small volume, high storage energy, stable performance and the like, which applies widely to micro robot electronic intelligent system, chemical sensor, battlefield friend or foe identification equipment, distributed battlefield sensor and the like.
Owner:TSINGHUA UNIV

Preparation method and application of MoS2/rGO-CN composite material

The invention belongs to the technical field of electrocatalytic hydrogen evolution, and relates to a preparation method and application of a molybdenum disulfide / reduced graphene oxide-nitrogen carbide (MoS2 / rGO-CN) composite material. The preparation method comprises the steps of: firstly adding graphite oxide into deionized water, adding melamine into the obtained mixture, then performing ultrasound dissolution so as to form a colloidal solution, adopting a hydrothermal method to prepare aerogel of reduced graphene oxide-nitrogen carbide, and then performing a solvothermal reaction to obtain the target product by adopting ammonium tetrathiomolybdate as a molybdenum source and a sulfur source and N,N-dimethylformamide as a solvent. The preparation method of the aerogel of the reduced graphene oxide-nitrogen carbide is simple and high in yield, and since the MoS2 / rGO-CN is prepared by using the one-step solvothermal method, the preparation method has low cost and high repeatability and facilitates large-scale synthesis; by means of the prepared MoS2 / rGO-CN composite material, the accumulation of the molybdenum disulfide is reduced, and the quantity of active sites is increased; the conductivity and the active area of the MoS2 can be improved through the combination of the MoS2 with the rGO-CN, and when the prepared MoS2 / rGO-CN composite material is applied to an electrocatalytic hydrogen evolution reaction, excellent catalytic performance can be exhibited, and when the current density is 10 mA.cm<-2>, the overpotential is 203 mV, and the Tafel slope is 48 mV.dec<-1>.
Owner:JIANGSU UNIV

Preparation method for three-dimensional network structure membrane electrode for direct methanol fuel cell

The invention discloses a preparation method for a three-dimensional network structure membrane electrode for a direct methanol fuel cell, belonging to the technical field of the structure and the manufacture of the efficient membrane electrode assembly of the direct methanol fuel cell. A catalysis layer in the membrane electrode prepared by the temperature controlling ultrasound spraying processis adopted to realize the three-dimensional network structure of the catalysis layer; the amount of active sites exposed on a three-phase interface, of the catalyst, is added to provide a path for gas and liquid transmission; a carbon cloth subjected to hydrophobicity processing serves as a diffusion layer; an Nafion membrane serves as a proton exchange membrane; Pt black and PtRu black serve as catalysts, and propyl alcohol serves as a diffusion agent; a Nafion solution serves as a binder in the catalysis layer, and a PTFE (polytetrafluoroethylene) membrane or tinfoil serves as a transferring medium; the catalysis layer is transferred and pressed on two sides of the proton exchange membrane from the transferring medium; and finally, the diffusion layer is arranged on the catalysis layer by hot pressing. The formed laminar combination is the membrane electrode. The membrane electrode prepared with the method has the three-dimensional network structure and has the advantages of evenly distributed pores and centralized pore diameter, the active area of the catalysis layer is obviously enlarged, and the output power density of the cell is obviously improved.
Owner:UNIV OF SCI & TECH BEIJING

Porous electrode for flow battery and preparation method of porous electrode

The invention provides a porous electrode for a flow battery and a preparation method of the porous electrode, and relates to the field of flow batteries. The preparation method comprises the following steps: S1, adding polyacrylonitrile and a metal salt into N, N-dimethylformamide or N, N-dimethylacetamide, carrying out heating and mixing until polyacrylonitrile and the metal salt are dissolved,so as to obtain an electrospinning stock solution; S2, carrying out electrostatic spinning by using the electrospinning stock solution to obtain an electrospun fiber membrane; S3, dissolving an organic ligand in a solvent to obtain an organic ligand solution, soaking the electrospun fibrous membrane in the organic ligand solution for a period of time, and generating MOF particles in situ on the surface of the electrospun fibrous yarn; and S4, carrying out pre-oxidation on the fibers with the MOF particles deposited on the surfaces, and then carrying out carbonization in an inert gas atmosphereto obtain the porous electrode. The porous electrode prepared in the invention has a large specific surface area, is helpful for reducing the activation loss of the battery and improving the performance of the battery, and can be suitable for various flow batteries.
Owner:GUANGZHOU HKUST FOK YING TUNG RES INST

Preparation method of electrode used for CO2 electrochemical reduction reaction

The invention relates to a preparation method of an electrode used for CO2 electrochemical reduction reaction. The electrode is prepared with foam copper, a copper wire mesh, a copper foil, a copper plate, a titanium wire mesh or a titanium plate as a substrate. The preparation method includes the steps of uniformly mixing a copper precursor solution being 0.01-2.0 M in concentrate and a template agent being 0.01-1.5 M in concentrate according to the molar ratio of 5:1-1:20 and magnetically stirring the solution for more than 30 min; moving the solution into a reaction kettle, immersing the substrate into the solution and performing a sealing reaction for 4-12 h; moving the substrate out from the reaction kettle, washing and drying the substrate, and performing thermal treatment to the substrate at 300-800 DEG C for 1-5 h under protection of an inert gas or an oxidizing atmosphere to obtain the substrate to which metal oxides are attached; and performing electrochemical reduction to the substrate to which metal oxides are attached in an acidic electrolyte to obtain the electrode. The preparation method is simple in preparation method and is suitable for large-scale production. The electrode is large in specific surface area and is high in CO2 oxygen reduction catalytic performance.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Preparation method of molecularly imprinted sensor based on carbon quantum dot/hollow nickel base material composite film modified glassy carbon electrode and application thereof

The invention belongs to the technical field of preparation of electrochemical sensors, and relates to a preparation method of a molecularly imprinted sensor based on a carbon quantum dot/a hollow nickel base material composite film modified glassy carbon electrode. The preparation method comprises the following steps of firstly depositing a Ni-Cu alloy layer in a three-electrode system, and thendealloying and removing copper to obtain a nano hollow nickel sphere layer; preparing an environment-friendly carbon quantum dot solution by adopting a biomass material, and modifying a glassy carbonelectrode coated with a nano hollow nickel sphere by using a composite solution of the carbon quantum dot and chitosan; and taking 3-aminophenylboronic acid as a functional monomer, and preparing themolecular imprinted sensor which has specific recognition response to the template molecular glucose on the surface of the glassy carbon electrode modified by a composite film through an electrochemical polymerization method. The preparation method of the molecularly imprinted sensor based on the carbon quantum dot/the hollow nickel base material composite film modified glassy carbon electrode provided by the invention effectively improves the active area and the electron transport performance. Combined with the molecular imprinting technology, the molecularly imprinted sensor with specific recognition response to glucose is prepared, and the molecularly imprinted sensor has the advantages of being simple in operation, low in cost, high in selectivity and sensitivity, and is expected to bepractical.
Owner:JIANGSU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products