Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

519results about "Copper sulfides" patented technology

Process for recovery of nickel and cobalt from laterite ore

A process for recovering nickel and cobalt values from nickel- and cobalt-containing laterite ores as an enriched mixed nickel and cobalt sulphide intermediate and for producing nickel and cobalt metal from the nickel and cobalt sulphide intermediate. The laterite ore is leached as a slurry in a pressure acid leach containing an excess of aqueous sulphuric acid at high pressure and temperature, excess free acid in the leach slurry is partially neutralized to a range of 5 to 10 g/L residual free H2SO4 and washed to yield a nickel- and cobalt-containing product liquor, the product liquor is subjected to a reductant to reduce any Cr(VI) in solution to Cr(III), the reduced product liquor is neutralized to precipitate ferric iron and silicon at a pH of about 3.5 to 4.0, and the neutralized and reduced product liquor is contacted with hydrogen sulphide gas to precipitate nickel and cobalt sulphides. The precipitated nickel and cobalt sulphides can be leached in a water slurry in a pressure oxidation leach, the leach solution subjected to iron hydrolysis and precipitation, the iron-free solution contacted with zinc sulphide to precipitate copper, the iron- and copper-free solution subjected to zinc and cobalt extraction by solvent extraction to produce a nickel raffinate, the nickel raffinate contacted with hydrogen gas to produce nickel powder and the cobalt strip solution from the solvent extraction step contacted with hydrogen gas to produce cobalt powder.
Owner:SHERRITT INTERNATIONAL

Chemical method for synthesizing flaky CuxSy nanocrystalline optoelectronic film controllably at low temperature

The invention provides a chemical method for synthesizing flaky CuxSy nanocrystalline optoelectronic film controllably at a low temperature. The method comprises the following steps: firstly adding sulfur powder in a container, secondly adding organic solvent N,N-dimethylformamide or absolute alcohol, wherein the volume of organic solvent is more than a half of the capacity of the container; standing at 0-60 DEG C for 1h to ensure that the sulfur powder dissolved in organic solvent is saturated, horizontally placing substrate material with a new and clean metal copper surface on the bottom of the container to avoid directly contacting with sulfur powder, reacting at 0-60 DEG C for 5-24h, cleaning the product with absolute alcohol, drying at room temperature to in-situ prepare the big area film material composed of flaky CuxSy nanocrystalline on the metal copper surface of the substrate material, wherein x:y=1-2. The method of the invention adopts low temperature, has low energy consumption, is simple, green and environmentally friendly and particularly applicable to large-area industrial production, and does not use any template, add any surfactant and perform complicated post-processing operations such as purification.
Owner:XUCHANG UNIV +1

Recovery of nickel, cobalt, iron, silica, zinc and copper from laterite ore by sulfuric acid leaching

A process for recovering nickel and cobalt values from nickel- and cobalt-containing laterite ores as an enriched mixed nickel and cobalt sulphide intermediate and for producing nickel and cobalt metal from the nickel and cobalt sulphide intermediate. The laterite ore is leached as a slurry in a pressure acid leach containing an excess of aqueous sulphuric acid at high pressure and temperature, excess free acid in the leach slurry is partially neutralized to a range of 5 to 10 g / L residual free H2SO4 and washed to yield a nickel- and cobalt-containing product liquor, the product liquor is subjected to a reductant to reduce any Cr(VI) in solution to Cr(III), the reduced product liquor is neutralized to precipitate ferric iron and silicon at a pH of about 3.5 to 4.0, and the neutralized and reduced product liquor is contacted with hydrogen sulphide gas to precipitate nickel and cobalt sulphides. The precipitated nickel and cobalt sulphides can be leached in a water slurry in a pressure oxidation leach, the leach solution subjected to iron hydrolysis and precipitation, the iron-free solution contacted with zinc sulphide to precipitate copper, the iron- and copper-free solution subjected to zinc and cobalt extraction by solvent extraction to produce a nickel raffinate, the nickel raffinate contacted with hydrogen gas to produce nickel powder and the cobalt strip solution from the solvent extraction step contacted with hydrogen gas to produce cobalt powder.
Owner:SHERRITT INC

Three-dimensional Cu2S@ZnO nanometer heterostructure semiconductor material and preparation method thereof

The invention discloses a three-dimensional Cu2S@ZnO nanometer heterostructure semiconductor material. The three-dimensional Cu2S@ZnO nanometer heterostructure semiconductor material comprises ZnO nanometer-particle crystals and a CU2S nanometer-flower structure substrate material, wherein the ZnO nanometer-particle crystals are uniformly covered on the CU2S nanometer-flower structure substrate material; the CU2S nanometer-flower structure substrate material consists of Cu2S nanometer-sheets; and a P-N junction is formed at the interface of the ZnO nanometer-particle crystals and the Cu2S nanometer-flower structure. The invention further discloses a preparation method of the three-dimensional Cu2S@ZnO nanometer heterostructure semiconductor material. The preparation method comprises the following steps of: synthesizing the Cu2S nanometer-flower crystals and ZnO nanometer-particle crystals by adopting a hydrothermal synthesis method, respectively; and uniformly compounding the ZnO nanometer particles on the Cu2S nanometer-sheets by using PEI (Polyether Imide) as an auxiliary material to obtain the three-dimensional Cu2S@ZnO nanometer heterostructure semiconductor material. The three-dimensional Cu2S@ZnO nanometer heterostructure semiconductor material has the advantages of being low in cost, low in growth temperature, high in repeatability and the like, and also has great development application potential in the on-spot emission field and the photo-catalysis field.
Owner:EAST CHINA NORMAL UNIV

P-type CuxSy semiconductor nanocrystalline, preparation method and application thereof

The invention discloses a p-type CuxSy semiconductor nanocrystalline, a preparation method and an application thereof and belongs to the fields of nanometer material preparation and applications. X/y of the nanocrystalline CuxSy is 1.8, the nanocrystalline is spherical, and the particle size of the nanocrystalline is 6-12nm. The preparation method includes preparing a copper source, preparing a sulfur source, injecting the copper source to the sulfur source, subjecting the solution to heating reaction to obtain a colloidal solution and subjecting the colloidal solution to washing and centrifugal sedimentation to obtain the nanocrystalline. The nanocrystalline is single in crystalline phase, good in dispersibility, controllable in size and morphology, good in electrical conductivity, high in carrier mobility and good in high temperature resistance and stability, the nanocrystalline is high in absorption ability in the whole near infrared area, and the absorption peak is 1100-1500nm. The preparation method is high in productivity and applicable to large-scale production. When the nanocrystalline is applicable to hole transport layers of thin-film solar cells, transport abilities of the hole transport layers can be obviously improved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY +1

Preparation method of spherical copper sulphide (CuS) particles

The invention relates to a preparation method of spherical (CuS) particles. The preparation method comprises the steps that: copper nitric acid trihydrate is added into a mixed solvent consisting of de-ionized water and ethylene glycol to obtain solution A; thiourea is added into the solution A to obtain solution B; polyvinylpyrrolidone K30 is added into the solution B to form precursor solution C; the precursor solution C is poured into a microwave hydrothermal reaction kettle, then, the reaction kettle is sealed and is put into a temperature and pressure dual-control microwave hydrothermal reaction instrument, a temperature control mode or a pressure control mode is selected for reaction, and the solution is naturally cooled to the room temperature after reaction completion; and the hydrothermal reaction kettle is opened, products are respectively washed by the de-ionized water and absolute ethyl alcohol after centrifugal collection, and final products of spherical CuS particles are obtained after drying. The method has the advantages that a simple microwave hydrothermal method preparation process is adopted, the reaction period is short, the energy consumption is low, the reaction is completed in one step in liquid phases, and the later-period treatment is not needed. The prepared CuS particles have regular sphere shapes and uniform size.
Owner:SHAANXI UNIV OF SCI & TECH

Method for preparing flower-shaped copper sulfide (CuS) nanocrystal

The invention relates to a method for preparing a flower-shaped copper sulfide (CuS) nanocrystal, which comprises the following steps of: dissolving a dissoluble copper salt into deionized water to obtain a solution A; adding sulfourea into the solution A to obtain a solution B; adding hexadecyl trimethyl ammonium bromide into the solution B to form a precursor solution C; pouring the precursor solution C into a microwave hydrothermal reaction kettle, sealing the reaction kettle, putting the reaction kettle into a temperature and pressure dual-control microwave hydrothermal reactor, and carrying out natural cooling to room temperature after the reaction is finished; and opening the hydrothermal reaction kettle, carrying out centrifugal collection on a product, then, washing the production by respectively using deionized water and absolute alcohol, and drying to obtain the flower-shaped copper sulfide nanocrystal. According to the method for preparing the flower-shaped copper sulfide nanocrystal, flower-shaped copper sulfide nanocrystals with different grain sizes are prepared through changing the concentration of an added surfactant, i.e. the hexadecyl trimethyl ammonium bromide, the grain size controllable preparation of the flower-shaped copper sulfide nanocrystals is achieved, and then, copper sulfide semiconductor materials with different optical and electrical properties are prepared; and CuS grains prepared by the method are of a flower-shaped structure formed by assembling flake-shaped crystals with the thickness of 20-50 nm, so that the CuS grains have larger surface areas and can be applied to the catalytic field.
Owner:SHAANXI UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products