Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

240results about How to "Lower transfer resistance" patented technology

Low-temperature electrolyte of lithium iron phosphate battery

The invention relates to a low-temperature electrolyte of a lithium iron phosphate battery. The low-temperature electrolyte includes the following solvents of, by volume, 30%-45% of carbonic ester solvent, 50%-65% of carboxylic ester solvent and 4%-10% of additive. The solvents contain solute lithium, the lithium is LiPF6 or a combination of the LiPF6 and LiBF4, and the concentration of the lithium is 0.8-1.4mol/L. The low-temperature electrolyte is a nonaqueous electrolyte, through optimization of kinds and proportioning combination of the solvents of the electrolyte, low-viscosity carbonic ester and low-melting-point carboxylic ester are selected and used, the freezing point at low temperature is lowered, and low-temperature conductivity is increased. According to the low-temperature electrolyte, the lithium of the electrolyte is optimized, the low-temperature additive is selected preferably, normal-temperature circulation ratio performance of the electrolyte is maintained, and meanwhile, the low-temperature capacity retention ratio of the lithium iron phosphate battery and the ratio performance of the lithium iron phosphate battery are improved. The commercial application requirements of the electrolyte can be met, the low-temperature performance of the electrolyte is improved particularly, and therefore the electrolyte is suitable for aerospace and plateau alpine environment.
Owner:SHANDONG UNIV

Crystalline silicon solar cell and preparation method thereof

The present invention provides a crystalline silicon solar cell and a preparation method thereof. The crystalline silicon solar cell comprises: an N-type silicon substrate; a tunneling oxide layer formed on the back surface of the N-type silicon substrate; and a polysilicon layer formed on the tunneling oxide layer, wherein the polysilicon layer comprises alternatively distributed N+ polysilicon areas and P+ polysilicon areas, and a space is arranged between each neighboring N+ polysilicon area and P+ polysilicon area. The tunneling oxide layer, the N+ polysilicon areas and the P+ polysiliconareas form a passivation contact structure on the back surface of the N-type silicon substrate. According to the crystalline silicon solar cell and the preparation method thereof, the recombination rate of the back surface of a battery is effectively reduced, and the open circuit voltage of the battery is improved. Compared with the conventional back knot and back contact solar cells, the doping process of the front surface is saved, the battery preparation process is simplified, the absorption loss of light is reduced, and thus the solar cell can facilitate the improvement of battery performance and the reduction of cost.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI

Lithium-sulfur battery positive electrode structure and preparation method thereof

The present invention relates to a lithium-sulfur battery positive electrode structure and a preparation method thereof. According to the lithium-sulfur battery positive electrode structure, a current collector is adopted as a substrate, two carbon-sulfur complex layers with different pore sizes are attached onto the substrate, the structure sequentially comprises the current collector, the large pore size carbon-sulfur complex layer and the small pore size carbon-sulfur complex layer, the thickness of the large pore size carbon-sulfur complex layer is 50-500 mum, the thickness of the small pore size carbon-sulfur complex layer is 10-200 mum, the large pore size carbon material is a carbon material with a pore size of greater than 100 nm and less than 1 mum and a pore volume accounting for 50-90% of the total pore volume, and the small pore size carbon material is a carbon material with a pore size of 0.5-100 nm and a pore volume accounting for more than 50-90% of the total pore volume. With the lithium-sulfur battery positive electrode structure, the mass transfer curvature of the lithium ions in the electrode is effectively increased, the lithium ion transmission path is prolonged, provision of the capacity of the high supporting capacity active substance is easily achieved, and the energy density of the battery is increased.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Buffer layer for sulfide solid-state battery, preparation method of buffer layer, and solid-state battery

The invention provides a buffer layer for a sulfide solid-state battery. The buffer layer comprises a polymer material and ethylene carbonate, and is formed in situ on an electrode plate through a buffer layer solution; and due to the existence of a polymer, poor physical contact between an electrode and an electrolyte caused by volume deformation of a positive electrode material in a charging/discharging process can be improved. The buffer layer is existent between the positive electrode and the solid electrolyte of the solid-state battery and between the negative electrode and the solid-state electrolyte, so that the solid-solid interface impedance can be reduced; and meanwhile, good ionic conductivity of the buffer layer can improve the lithium ion transmission capacity. The sulfide composite positive electrode in the solid-state battery provided by the invention contains the polymer material, and the existence of the polymer can improve the poor physical contact between the electrode and the electrolyte caused by the volume deformation of the positive electrode material in the charging/discharging process; and meanwhile, the solid-state battery contains the buffer layer, so that the solid-state battery has low interface resistance and high ionic conductivity, and is excellent in capacity and cycling performance.
Owner:SHANGHAI INST OF SPACE POWER SOURCES

Method for preparing MnO2/carbon composite material for super-capacitor

The invention provides a method for preparing a MnO2/carbon composite material for a super-capacitor. The method includes the steps of step one, dissolving glucose or sucrose or fructose in deionized water, stirring until a settled solution is obtained, transferring the settled solution into a hydrothermal reaction kettle, performing centrifugation, water washing, alcohol washing and drying on an obtained polymeric pecursor solution to prepare monodisperse carbon spheres; step two, taking the monodisperse carbon spheres, performing heat treatment on the monodisperse carbon spheres in a NaOH solution, then performing centrifugation, water washing and alcohol washing on a mixture solution three times, conducting drying, and performing calcination treatment in vacuum or inert atmosphere; step three, using the carbon spheres experiencing modified treatment in the step two as a template, placing the template in a KMnO4 aqueous solution, stirring and aging at the room temperature, obtaining a sediment, performing centrifugation, water washing and alcohol washing on the sediment, performing drying in a vacuum oven, and obtaining CS@MnO2 coated powder. Obtained MnO2/carbon sphere composite powder is of a core-shell structure, the specific surface area of the powder can reach more than 778m<2>/g, the specific capacity of the powder can reach more than 439F/g, charge transfer resistance is lower than 2.1 omega, and the powder is a novel super-capacitor electrode material.
Owner:TSINGHUA UNIV

Method for preparing anode of microorganism fuel battery with graphene and ferrous disulfide compound

ActiveCN106784829AImprove performanceLower anode electron transfer resistanceCell electrodesBiochemical fuel cellsIonCvd graphene
The invention discloses a method for preparing the anode of a microorganism fuel battery with a graphene and ferrous disulfide compound, and belongs to the field of environments, materials and energy. The method comprises the following steps: (1) gradually dropping a ferric trichloride and thiourea solution into a graphene oxide dispersion in a reaction kettle one droplet by one droplet, uniformly stirring, sealing the reaction kettle, and performing hydrothermal reaction for 12-24 hours within 140-200 DEG C so as to obtain a hydrogel sample; (2) washing the hydrogel sample for times with deionized water, performing freeze-drying, and crushing so as to obtain a nano powder of the graphene and ferrous disulfide compound; (3) mixing the nano powder with a 5% nafion solution, isopropanol and deionized water, uniformly oscillating, coating carbon cloth with the solution, fixing the carbon cloth with a fixing part, and drying the carbon cloth in air, so as to obtain the anode. The method has the advantages that the synthesis steps are very simple, obtained particles are uniform in morphology, graphene lamellas are overlapped to form a well-developed porous structure, good electrochemical properties and biocompatibility can be achieved, and the anode of the microorganism fuel battery has very good properties.
Owner:HARBIN INST OF TECH

Preparation method of nano-silver particle dispersed Li*Ti*O* thin film lithium ion battery negative electrode

InactiveCN101609883AStoichiometric composition controllableGood dispersionElectrode manufacturing processesDecompositionHYDROSOL
The invention discloses a preparation method of an all solid-state film lithium ion battery negative electrode-a nano-silver particle dispersed Li4Ti5O12 negative electrode thin film, which belongs to the technical field of electrochemistry. The process is as follows: material preparation: dissolving compounds of titanium and the compounds of lithium in an organic solvent for obtaining solution A and mixing water, complexing agent and silver nitrate for obtaining solution B; preparation of precursor solution as follows: stirring and mixing the solution A and the solution B to a stable sol; and the preparation of the thin film: preparing a gel thin film on a substrate through the sol-gel method, carrying out preheating decomposition at 200-400 DEG C, annealing in an H2 atmosphere at 600-800 DEG C and further preparing the Ag / Li4Ti5O12 thin film. The thin film provided by the invention has the advantages of controllable stoichiometric composition, simple preparation method, process and equipment and easy preparation of the negative electrode thin film with large area. Compared with the traditional Li4Ti5O12 thin film negative electrode, the lithium ion battery negative electrode of the invention has high area specific capacity and excellent cycle performance in case of high multiplying power discharge.
Owner:大连德润达实业有限公司

Oxygen-containing functional group gradient distribution reduced graphene oxide/graphene foam composite and application thereof to vanadium redox batteries

The invention discloses an oxygen-containing functional group gradient distribution reduced graphene oxide / graphene foam composite and an application thereof to vanadium redox batteries, belonging to the field of battery materials and energy storage. Graphene foam is obtained by a chemical vapor deposition method, a three-dimensional graphene foam and graphene oxide aerogel structure is obtained in combination with graphene oxide aerogel preparation and metals are utilized for gradient reduction, thus achieving integration of high conductivity of a thee-dimensional network of graphene and graphene oxide with abundant oxygen-containing functional groups. The composite has the advantages and beneficial effects that by using the material as the electrode material of the vanadium redox batteries, the electrocatalytic activity and electrochemical reversibility of the V<2+> / V<3+> and VO<2+> / VO2<+> oxidation reaction can be improved, the charge transfer resistance can be reduced, the energy efficiency of the vanadium redox batteries can be improved and the cycle lives of the vanadium redox batteries can be prolonged; the composite has the characteristics of simplicity and convenience in operation, high yield and easiness in structure adjustment and control and has a terrific application prospect.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Lithium-sulphur battery diaphragm preparation method, lithium-sulphur battery diaphragm and lithium-sulphur battery

The invention relates to the field of lithium-sulphur batteries, and provides a lithium-sulphur battery diaphragm preparation method. The lithium-sulphur battery diaphragm preparation method comprises the four steps of: simultaneously adding chemical staple fibre and separated and wrinkled micro-fibre into a solvent; after free deposition of matrix slurry, coating uniformly dispersed nano-cellulose slurry on the surface of a matrix; after nano-cellulose is formed, coating conductive polymer and nano-cellulose composite slurry on the surface, finally, squeezing, and drying to form the diaphragm; and, hot pressing and cutting the diaphragm. According to the lithium-sulphur battery diaphragm preparation method provided by the invention, the lithium-sulphur battery diaphragm can be obtained through the steps S1-S4; and thus, the coulombic efficiency of the lithium-sulphur battery can be improved. The invention provides a lithium-sulphur battery diaphragm comprising an intermediate layer, a basal layer and a surface layer. The lithium-sulphur battery diaphragm provided by the invention can store a lot of electrolyte; and thus, the battery cycle capacity is improved. The invention provides a lithium-sulphur battery comprising the diaphragm. The performance of the lithium-sulphur battery provided by the invention is greatly improved.
Owner:宁波柔创纳米科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products