Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1007results about How to "Effective dissolution" patented technology

Apparatus and method of removing water soluble support material from a rapid prototype part

The support removal apparatus comprising in combination a retention tank having a manifold assembly comprising a plurality of nozzle heads in hydraulic communication with the discharge side of a pump, collectively configured for agitating an aqueous cleaning solution comprised of sodium or potassium hydroxide, sodium or potassium carbonate, and water; a heating element mounted within the retention tank for heating the aqueous cleaning solution to a predetermined temperature set point; a basket strainer mounted within the retention tank in hydraulic communication with the intake side of the pump to mitigate passage of small rapid prototype parts and residual support material therethrough and into the pump and manifold assembly; a work surface mounted atop the retention tank and having a movable lid fitted with a basket for containing small rapid prototype parts; a thermocouple for maintaining the temperature within a tolerable range for optimum removal of support material; a level indicator to ensure adequate solution level in the retention tank for operability of the pump and heating element; a cabinet having interface controller mounted on an exterior panel thereof for setting timer and heat functions; and a microprocessor having capabilities for making minute adjustments to the heating element via feedback from the thermocouple and controlling operation of the pump and heating element for a pre-set time interval.
Owner:TAFOYA DAVID JONATHAN

Method for recycling lithium, nickel, cobalt and manganese from waste ternary anode material

The invention discloses a method for recycling lithium, nickel, cobalt and manganese from a waste ternary anode material. The method comprises the steps of with the waste ternary anode material as theraw material, adding a carbon reducing agent, carrying out mixing and dosing, carrying out roasting reduction at 500-700 DEG C in a protective atmosphere, adding the roasted product into water, carrying out water-soluble reaction, after the reaction is finished, filtering to obtain lithium carbonate filtrate and a filter residue I, carrying out sulfuric acid leaching on the filter residue I so asto obtain a filtrate containing nickel, cobalt and manganese and a filter residue II, adding sulfate so as to adjust the proportion of nickel, cobalt to manganese in the filtrate containing nickel, cobalt and manganese, carrying out precipitation reaction on the filtrate containing nickel, cobalt and manganese, a sodium hydroxide solution and an ammonia water solution in the protective atmosphere, controlling the reaction temperature at 50-70 DEG C and the pH value at 10-11, obtaining ternary precursor slurry after the precipitation reaction, filtering, washing, and drying, so as to obtain the ternary precursor. The method has the beneficial effects that the separation condition of lithium carbonate is simple, the costs of leaching processes of nickel, cobalt and manganese and the regeneration process of the ternary material precursor are low, and the recycling rate is high.
Owner:HUNAN UNIV OF TECH

Printing strippable protective ink, and preparation method and application thereof

The invention discloses a printing strippable protective ink, and a preparation method and application thereof. The ink comprises the following components in parts by weight: 50-80 parts of thermoplastic film-forming resin, 20-50 parts of low-viscosity plasticizer, 1-10 parts of filler and pigment, and 1-3 parts of functional assistant. The printing strippable protective ink has 100% solid rate, does not volatilize any solvent, is a green environment-friendly material, and satisfies the increasingly higher ecological environmental requirements. The ink has the advantages of no irritating smell, moderate viscosity and no voids, is not sticky to the printing screen, and is easy for printing operation; the ink can form a film by thermosetting at medium / low temperature, so the energy consumption is low; the thermosetting film has high flexibility, favorable heat resistance, favorable insulativity and favorable acid / alkali resistance, and effectively solves the influence on the resistance when etching the circuit on a transparent conductive film with acid and alkali in the touch screen manufacturing process; and after the conductive film protecting technique is finished in the touch screen manufacturing process, the protective ink layer can be easily stripped, and does not leave any residue, thereby effectively solving the problem of protection of the conducting film in the existing touch screen manufacturing process.
Owner:PANYU NANSHA YAN TIN CHEM

Method for extracting lithium and other alkali metal elements from lepidolite mineral

The invention discloses a high-temperature mineral phase reconstruction method for extracting lithium and other alkali metal elements from lepidolite mineral, comprising the following steps: mixing raw materials, pelletizing, calcining at high temperature, water quenching, ball milling, dissolving out, producing compounds and the like. The invention teaks raw mineral component composition to design target reconstruction mineral and composition to obtain the purpose of optimizing processes, lowering energy consumption and cost of treatment process and efficiently extracting lithium, potassium, rubidium, caesium and the like. Silicon and aluminum in lepidolite can enter anorthite type mineral phase (CaO.Al2O3.2SiO2, (Ca, Na)O. (Al, Si)2O3.2SiO2) and calcium ash quarry phase (CaO.SiO2) after mineral phase reconstruction, and do not dissolve in water and aqueous solution. After mineral phase reconstruction reaction, fluorine in lepidolite enters calcium fluoride mineral phase and does not dissolve in water and aqueous solution. Lithium and other alkali metal elements in lepidolite enter salt (chloride, sulfate) or alkali (hydroxide) phase of lithium and other alkali metal elements after mineral phase reconstruction reaction and can be dissolved in water and aqueous solution.
Owner:CENT SOUTH UNIV

Efficient vanadium extraction method by performing alkali roasting on vanadium mineral

ActiveCN103088207ABreak the barrierEfficient DissolutionProcess efficiency improvementPotassium hydroxideDissolution
The invention discloses an efficient vanadium extraction method by performing alkali roasting on vanadium mineral. The method comprises the following processing steps of: (1) mixing the vanadium mineral with sodium hydroxide or potassium hydroxide for pellet fabrication, and oxidizing and roasting pellets at the temperature of 300-700 DEG C to obtain roasted clinker; (2) leaching the roasted clinker using water or aqueous alkali corresponding to the step 1, and then carrying out solid-liquid separation to obtain leaching residue and a vanadium dissolution solution; and (3) cooling and crystallizing silicon-removed vanadium digestion solution to obtain vanadate. The alkali roasting is used by the method provided by the invention, because alkali can function as a caking agent in the aggregating process, the caking agent can be saved; not only is the roasting temperature reduced largely and process flow largely shortened, but also no waste gas, ammonia-nitrogen wastewater and the like are discharged, as well as a leachate can be recycled; and a silicate phase can be directly destroyed to promote the destroy and the oxidization of a vanadium phase, and the oxidative enveloping and the leaching hindering of the silicate phase to the vanadium can be prevented so that the efficient vanadium leaching can be realized and the leaching rate can reach more than 95%.
Owner:HEBEI IRON AND STEEL

Quantitative lateral flow system and assay

The present invention relates to a lateral flow assay and system, including a test strip, for detection and quantification of analytes in samples, such as samples containing cells and fluid, where the assay is volume independent, and the sample size is less than about 100 μl, where the test strip includes a first membrane such as a sample filter, that is in capillary contact with an optional second membrane, such as a fluid collector, the second membrane, if present is in capillary contact with an optional third membrane, such as a conjugate pad containing a mobilizable detectable agent, or with a fourth membrane, which is a chromatographic strip, which optionally contains a mobilizable detectable agent, all such membranes being in fluid contact with a fifth membrane, such as a buffer pad, a sixth membrane, such as an absorbent pad, optionally a seventh membrane, which is also an absorbent pad, a capture band for capturing the analyte and at least one control band, or alternatively, the chromatographic strip contains the mobilizable detectable agent in place of a conjugate pad, where the test strip is configured to support removal of red blood cells from the sample and to allow uni-directional or bi-directional fluid flow of fluid from the sample filter to the capture band to be retained therein and detected thereon.
Owner:RELIA DIAGNOSTIC SYST

Low-temperature electrolyte of lithium iron phosphate battery

The invention relates to a low-temperature electrolyte of a lithium iron phosphate battery. The low-temperature electrolyte includes the following solvents of, by volume, 30%-45% of carbonic ester solvent, 50%-65% of carboxylic ester solvent and 4%-10% of additive. The solvents contain solute lithium, the lithium is LiPF6 or a combination of the LiPF6 and LiBF4, and the concentration of the lithium is 0.8-1.4mol/L. The low-temperature electrolyte is a nonaqueous electrolyte, through optimization of kinds and proportioning combination of the solvents of the electrolyte, low-viscosity carbonic ester and low-melting-point carboxylic ester are selected and used, the freezing point at low temperature is lowered, and low-temperature conductivity is increased. According to the low-temperature electrolyte, the lithium of the electrolyte is optimized, the low-temperature additive is selected preferably, normal-temperature circulation ratio performance of the electrolyte is maintained, and meanwhile, the low-temperature capacity retention ratio of the lithium iron phosphate battery and the ratio performance of the lithium iron phosphate battery are improved. The commercial application requirements of the electrolyte can be met, the low-temperature performance of the electrolyte is improved particularly, and therefore the electrolyte is suitable for aerospace and plateau alpine environment.
Owner:SHANDONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products