Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2358 results about "Chemical sensor" patented technology

Electrochemical sensors including electrode systems with increased oxygen generation

The present invention relates generally to systems and methods for increasing oxygen generation in electrochemical sensors in order to overcome the oxygen limitations. The preferred embodiments employ electrode systems with at least two electrodes in relatively close proximity to each other; wherein at least one electrode is configured to generate oxygen and at least one other electrode is configured to sense an analyte or a product of a reaction indicative of the concentration of analyte. The oxygen generated by the oxygen-generating electrode is available to the catalyst within a membrane system and / or the counter electrode, thereby enabling the electrochemical sensors of the preferred embodiments to function even during ischemic conditions.
Owner:DEXCOM

In vitro analyte sensor and methods of use

In vitro electrochemical sensors that provide accurate and repeatable analysis of a sample of biological fluid are provided. Embodiments include sensors that include a sample chambers having overhangs extending therefrom.
Owner:ABBOTT DIABETES CARE INC

Method of making a transcutaneous electrochemical sensor

A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes fanning channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.
Owner:THERASENSE

Combined lancet and electrochemical analyte-testing apparatus

InactiveUS20050011759A1Easy to takeReduces and eliminates disposal issueImmobilised enzymesBioreactor/fermenter combinationsTissue fluidDisplay device
An apparatus for detection and quantitation of an electrochemically-detectable analyte, such as glucose, in blood or interstitial fluid includes a meter unit, a lancet and an electrochemical sensor. Of these components, the meter is preferably reusable, while the lancet and the electrochemical sensor are preferably incorporated in assemblies intended for single-use. The meter unit has a housing, within which a lancet is engaged with a mechanism for moving then lancet; a connector disposed within the housing for engaging an electrochemical sensor specific for the analyte and transmitting a signal indicative of the amount of analyte, and a display operatively-associated with a connector for displaying the amount of the analyte to user. The electrochemical sensor is adapted for detection of a particular analyte. In addition, the electrochemical sensor has an absorptive member for uptake of a sample of blood or interstitial fluid. In one version, the lancet moves from a initial position to a piercing position in which skin of the user is pierced and optionally back to a retracted position. The electrochemical sensor is disposed such that the absorptive member takes up a sample from the pierced skin of the user when it is pierced by the lancet without movement of the apparatus. In an alternative version, the lancet is a hollow cannula through which blood or interstitial fluid is transported from the puncture site to an absorbent portion of the electrochemical sensor. In either version, the apparatus provides single-step operation in which sample acquisition and analysis occur as a result of the single action of pressing, the apparatus against the users skin.
Owner:LIFESCAN IP HLDG LLC

Sub-Threshold Capfet Sensor for Sensing Analyte, A Method and System Thereof

The present invention relates to high sensitivity chemical sensors, more particularly relates to high sensitivity chemical sensors which are capacitively coupled, FET based analyte sensors. A sub-threshold capacitively coupled Field Effect Transistor (CapFET) sensor for sensing an analyte comprises fixed dielectric placed on substrate of the CapFET and second dielectric sensitive to the analyte, placed between gate terminal of the CapFET and the fixed dielectric, wherein presence of the analyte alters either dielectric constant of the second dielectric or work function of the gate.
Owner:INDIAN INSTITUTE OF SCIENCE

Flexible visually directed medical intubation instrument and method

A flexible medical intubation instrument provided for placement into an animal or human patient comprises a catheter with at least a pair of longitudinally extending lumens or channels including a sensor and/or actuator channel and a working channel. In the sensor/actuator channel is provided a fixed or slideably removable sensor cable having a sensor for sensing a characteristic or condition including any of the following: a visual sensor for optical viewing, a chemical sensor, a pH sensor, a pressure sensor, an infection sensor, an audio sensor, or a temperature sensor. The sensors are coupled by the sensor/actuator cable through light transmission, electric current, or radio transmission to a viewing instrument or other output device such as a meter or video screen for displaying the condition that is sensed within the body of the patient while the flexibility of the composite structure comprising the catheter and cable enable the entire instrument to flex laterally as it moves through curved passages or around obstructions during insertion or removal. While making observations through the sensor channel, the working channel simultaneously functions as a drain or an irrigation duct, a feeding tube, or to provide a passage for the insertion of one or a succession of surgical devices such that the catheter serves as a protective artificial tract or liner as surgical devices are inserted and removed through it in succession so as to minimize tissue trauma, infection, and pain experienced by the patient. The instrument can be used in urology, as well as a visually directed nasogastric tube, as a visually directed external gastrostomy tube, or as a visually directed internal gastric tube or percutaneous endoscopic gastrostomy tube and in other applications.
Owner:PERCUVISION

Implantable Medical Device with Chemical Sensor and Related Methods

In an embodiment, the invention includes an implantable medical device with a pulse generator and a chemical sensor in communication with the pulse generator, the chemical sensor configured to detect an ion concentration in a bodily fluid. In an embodiment, the invention includes a method for providing cardiac arrhythmia therapy to a patient including sensing a physiological concentration of an analyte, communicating data regarding the physiological concentration of the analyte to an implanted pulse generator, and delivering therapy to the patient based in part on the physiological concentration of the ion. In an embodiment, the invention includes a method for monitoring diuretic therapy. In an embodiment, the invention includes a method for controlling delivery of an active agent into a human body. Other aspects and embodiments are provided herein.
Owner:CARDIAC PACEMAKERS INC

Biomedical electrochemical sensor array and method of fabrication

Methods for fabricating a plurality of sensors on a flexible substrate, with each sensor having associated electrodes and at least one well include (a) providing a flexible substrate material layer having a surface area defined by a length and width thereof; (b) forming a plurality of sensor elements onto the flexible substrate material layer, each sensor element comprising at least one metallic electrode; (c) disposing at least one coverlay sheet layer over the flexible substrate sandwiching the sensor elements therebetween; (d) laminating the at least one coverlay sheet layer having an associated thickness to the flexible substrate; and (e) removing predetermined regions of the laminated coverlay sheet layer from the flexible substrate layer to expose a portion of the underlying metallic pattern of each sensor element and to define a well with a depth corresponding to the thickness of the coverlay sheet layer. The disclosure also describes multi-layer laminated flexible sensors and arrays of sensors with wells having enhanced well capacity and / or depth.
Owner:ROCHE DIABETES CARE INC

Flexible nanostructure electronic devices

A flexible electronic device is made up of nanostructures. Specifically, the device includes a flexible substrate, a film of nanostructures in contact with the flexible substrate, a first conducting element in contact with the film of nanostructures, and a second conducting element in contact with the film of nanostructures. The nanostructures may comprise nanotubes, such as carbon nanotubes disposed along the flexible substrate, such as an organic or polymer substrate. The first and second conductive elements may serve as electrical terminals, or as a source and drain. In addition, the electronic device may include a gate electrode that is in proximity to the nanotubes and not in electrical contact with the nanotubes. In this configuration, the device can operate as a transistor or a FET. The device may also be operated in a resistive mode as a chemical sensor (e.g., for sensing NH3).
Owner:NANOMIX +1

DNA Sequencing and Amplification Systems Using Nanoscale Field Effect Sensor Arrays

In one aspect, described herein are field effect chemical sensor devices useful for chemical and / or biochemical sensing. Also provided herein are methods for single molecule detection. In another aspect, described herein are methods useful for amplification of target molecules by PCR.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS +1

Upconversion luminescence materials and methods of making and using same

The present relates in general to upconversion luminescence ("UCL") materials and methods of making and using same and more particularly, but not meant to be limiting, to Mn2+ doped semiconductor nanoparticles for use as UCL materials. The present invention also relates in general to upconversion luminescence including two-photon absorption upconversion, and potential applications using UCL materials, including light emitting diodes, upconversion lasers, infrared detectors, chemical sensors, temperature sensors and biological labels, all of which incorporate a UCL material.
Owner:FLIR DETECTION

Telematics system

Vehicle telematics system including an occupant sensing system arranged to determine one or more properties or characteristics of occupancy of the vehicle, a crash sensor system for determining when the vehicle experiences a crash and a communications device arranged to enable a communications channel to be established between the vehicle and a remote facility after the vehicle is determined to have experienced a crash. Information determined by the occupant sensing system is transmitted via the communications channel to the remote facility, even in the absence of initiation of the communications channel by the occupant. The occupant sensing system may include an image-obtaining sensor for obtaining images of the passenger compartment of the vehicle, a motion sensor, receivers arranged to receive waves, energy or radiation from seating locations in the passenger compartment, heartbeat sensors, weight sensors associated with seats in the vehicle and / or chemical sensors.
Owner:AMERICAN VEHICULAR SCI

Microprocessor-controlled microfluidic platform for pathogen, toxin, biomarker, and chemical detection with removable updatable sensor array for food and water safety, medical, and laboratory applications

The invention provides a platform technology with rich ability to flexibly perform, create, deploy, maintain, and update a wide range of panels, assay, array, and / or sequence of tests for a wide range of substances and pathogens. The invention provides a unifying framework for widely-ranging miniature sensor implementation, fluidic / gas interfacing, electrical interfaces and optical interfaces, and further by collocating, allowing the integration a large number highly-selective sensors and chemical sensors—together as needed with appropriately selected supplemental sensors (for example temperature, pH, selective ions, etc.), into a common readily-manufacturable framework. The diverse sensor arrays give rise to statistical enhancing through novel statistical processing approaches. The invention is deployable and useable in a wide range of situations previously unavailable, and addresses many otherwise problematic aspects of field testing for food safety, water safety, epidemic outbreaks, routine diagnosis, and disease monitoring.
Owner:NRI R&D PATENT LICENSING LLC

Meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials

The present invention is directed to an improved meter that utilizes a method of reducing the effects of interfering compounds in the measurement of analytes and more particularly to a method of reducing the effects of interfering compounds in a system wherein the test strip utilizes two or more working electrodes. In one embodiment of the present invention, a meter is described which applies a first potential to a first working electrode and a second potential, having the same polarity but a greater magnitude than the first potential, is applied to a second working electrode. The meter then measures the generated current and utilizes a predetermined algorithm to correct the measured current to compensate for the presence of interfering compounds in the sample.
Owner:LIFESCAN IP HLDG LLC

Modulated chemical sensors

The present invention relates to modulated (e.g., magnetically modulated) chemical sensors. In particular, the present invention relates to particles comprising fluorescent indicator dyes and methods of using such particles. Magnetic fields and / or Brownian motion modulate an optical property of the particle to distinguish it from background signals. The present invention thus provides improved methods of detecting a wide variety of analytes in fluids, fluid samples, cells and tissues.
Owner:RGT UNIV OF MICHIGAN

Semiconductor device-based sensors

Semiconductor device-based chemical sensors and methods associated with the same are provided. The sensors include regions that can interact with chemical species being detected. The chemical species may, for example, be a component of a fluid (e.g., gas or liquid). The interaction between the chemical species and a region of the sensor causes a change in a measurable property (e.g., an electrical property) of the device. These changes may be related to the concentration of the chemical species in the medium being characterized.
Owner:MACOM TECH SOLUTIONS HLDG INC

Light fixture having power over ethernet power sourcing equipment

Power over Ethernet power sourcing device is provided inside a light fixture to enable a communications interface and provide electrical power to devices such as cameras, rain sensors, chemical sensors, wireless data uplink units, and other power over Ethernet powered devices. The power over Ethernet system is especially adapted for use in LED street lights and must be able to operate from a wide AC voltage supply range that is typically found in these types of lights.
Owner:GLOBAL GREEN LIGHTING

Method and arrangement for obtaining and conveying information about occupancy of a vehicle

Method and arrangement for obtaining and conveying information about occupancy of a passenger compartment of a vehicle including at least one sensor for obtaining data from the passenger compartment. Information about the occupancy is generated based on the data and transmitted, e.g., through a cellular phone system, to emergency response personnel to enable them to respond accordingly. The information about the occupancy may be generated by a processor applying pattern recognition techniques so that any occupants of the seat may be classified and such classification transmitted to the emergency response personnel. The data may also be used to determine the number of occupants in the vehicle and / or whether the occupants are moving after a crash. The sensors may be a variety of sensors such as an ultrasonic sensor, an electromagnetic wave sensor, an electric field sensor, a chemical sensor, a weight sensor, a motion sensor, a microphone, a heartbeat sensor, a vibration sensor, an acceleration sensor and a capacitance sensor.
Owner:AUTOMOTIVE TECH INT

Wafer level microelectronic packaging with double isolation

A microelectronic package may include front and rear covers overlying the front and rear surfaces of a microelectronic element such as an infrared sensor and spaces between the microelectronic element and the covers to provide thermal isolation. A sensing unit including a microelectronic package may include a reflector spaced from the front cover to provide an analyte space, and the microelectronic element may include an emitter and a detector so that radiation directed from the emitter will be reflected by the sensor to the detector, and such radiation will be affected by the properties of the analyte in the analyte space. Such a unit provides a compact, economical chemical sensor. Other packages include elements such as valves for passing fluids into and out of the spaces within the package itself.
Owner:TESSERA INC

Multi-sensor platform for crop health monitoring

A multi-sensor device comprises a housing containing multiple sensor modules for capturing and transmitting sensor data for plants in a crop. A control unit within the housing is operable to control the sensor modules, and a communications interface is connected to the control unit for transmitting data from said plurality of sensor modules. The sensor modules can include a physiological sensor, a surface analysis sensor, and chemical sensor. The multi-sensor device can be used as a hand-held device or mounted to a mobile platform for use in an automated crop monitoring system.
Owner:ECOATION INNOVATIVE SOLUTIONS INC

Enhanced identification appliance having a plurality or data sets for authentication

An enhanced identification appliance, such as a wristband, bracelet, patch, headband, neckband, ankleband, legband, card, sticker, or other wearable appliance, may have a biometric sensor, chemical sensor, optical sensor, heat sensor, pressure sensor, humidity sensor, electromagnetic sensor, acoustic sensor, various opto-electronics and / or various security features such as tamper-evident and tamper-resistant features. The sensors may obtain information about the wearer such as a fingerprint, retina, iris, blood, DNA, genetic data, voice pattern, temperature and other characteristic. Security features include a fastener on the identification appliance, which indicates whether the appliance has been attached to a wearer and if so, enables circuit functions. If one tampers with the appliance, circuit functions may be disabled, certain data erased, and / or evidence of tampering made apparent. The appliance may monitor the location or determine the identity of passengers for an airplane, train, boat, bus, or other vehicle. Alternatively, the identification band may contain a person's immigration status.
Owner:QELILISHI LTD LLC +1

Chemical sensor

A sensor device is formed from a metal film having a plurality of openings, a sensor material positioned within each of the openings, a light source that emits light having a first wavelength, and a light detector that detects light emitted from the light source and transmitted through or reflected from the openings. The plurality of openings are arranged periodically in a first direction in the metal film, and both a size of each of the plurality of openings and an interval thereof in the first direction are equal to or less than the wavelength of the light.
Owner:CANON KK

Integrated biological and chemical sensors

An array of piezoelectric resonators used in a sensor device in order to identify chemical and biological agents. The resonators can operate as bulk acoustic wave (BAW), surface acoustic wave (SAW), or Love mode devices. The sensor device integrates gravimetric, calorimetric, thermal gravimetric, voltage gravimetric and optical detection methods into one sensor system, improving the accuracy of identifying hazardous agents. For gravimetric detection, dual-mode resonators provide simultaneous calorimetric and gravimetric data, one type from each mode. Resonators with heaters on the surfaces will provide thermal gravimetric data. An optical detector can be used to analyze the optical signal from the surface of a coated resonator. Additionally, voltage gravimetric measurements can be made with an electric field set up between the resonator and an external electrode. Thermal voltage gravimetric measurements can be made by adding an integrated heater on the resonator with an external electrode. An alarm can be activated upon the identification of a hazardous agent. The sensor device can utilize other valuable information, including traceable time, GPS location, and variables related to temperature, humidity, air speed, and air direction.
Owner:HANSON WILLIAM PAYNTER
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products