Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

329 results about "Doping profile" patented technology

Conformal doping via plasma activated atomic layer deposition and conformal film deposition

Disclosed herein are methods of doping a patterned substrate in a reaction chamber. The methods may include forming a first conformal film layer which has a dopant source including a dopant, and driving some of the dopant into the substrate to form a conformal doping profile. In some embodiments, forming the first film layer may include introducing a dopant precursor into the reaction chamber, adsorbing the dopant precursor under conditions whereby it forms an adsorption-limited layer, and reacting the adsorbed dopant precursor to form the dopant source. Also disclosed herein are apparatuses for doping a substrate which may include a reaction chamber, a gas inlet, and a controller having machine readable code including instructions for operating the gas inlet to introduce dopant precursor into the reaction chamber so that it is adsorbed, and instructions for reacting the adsorbed dopant precursor to form a film layer containing a dopant source.
Owner:NOVELLUS SYSTEMS

Advanced CMOS using super steep retrograde wells

InactiveUS7064399B2High thermal budgetIncrease dopant activationTransistorSemiconductor/solid-state device detailsDopantCMOS
The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
Owner:TEXAS INSTR INC

Abrupt “delta-like” doping in Si and SiGe films by UHV-CVD

A structure and method of forming an abrupt doping profile is described incorporating a substrate, a first epitaxial layer of Ge less than the critical thickness having a P or As concentration greater than 5×1019 atoms / cc, and a second epitaxial layer having a change in concentration in its first 40 from the first layer of greater than 1×1019 P atoms / cc. Alternatively, a layer of SiGe having a Ge content greater than 0.5 may be selectively amorphized and recrystalized with respect to other layers in a layered structure. The invention overcomes the problem of forming abrupt phosphorus profiles in Si and SiGe layers or films in semiconductor structures such as CMOS, MODFET's, and HBT's.
Owner:GLOBALFOUNDRIES INC

Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells

A method of forming a multifunction solar cell including an upper subcell, a middle subcell, and a lower subcell, including providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a grading interlayer over the second subcell, the grading interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the grading interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell, wherein at least one of the bases of a solar subcell has an exponentially doped profile.
Owner:EMCORE SOLAR POWER

JFET Having a Step Channel Doping Profile and Method of Fabrication

A junction field effect transistor comprises a semiconductor substrate, a source region formed in the substrate, a drain region formed in the substrate and spaced apart from the source region, and a gate region formed in the substrate. The transistor further comprises a first channel region formed in the substrate and spaced apart from the gate region, and a second channel region formed in the substrate and between the first channel region and the gate region. The second channel region has a higher concentration of doped impurities than the first channel region.
Owner:DSM SOLUTIONS

Monolithically-Integrated Graphene-Nano-Ribbon (GNR) Devices, Interconnects and Circuits

The invention discloses new and advantageous uses for carbon / graphene nanoribbons (GNRs), which includes, but is not limited to, electronic components for integrated circuits such as NOT gates, OR gates, AND gates, nano-capacitors, and other transistors. More specifically, the manipulation of the shapes, sizes, patterns, and edges, including doping profiles, of GNRs to optimize their use in various electronic devices is disclosed.
Owner:UNIV OF VIRGINIA

ESD protection apparatus and circuit thereof

ActiveUS20080067601A1Improve electrical contact characteristicsTransistorSemiconductor/solid-state device detailsEngineeringDoping profile
The present invention provides several embodiments with layout patterns for ESD protection. An apparatus with a layout pattern may be configured to protect I / O pads or the power rail. The layout pattern may designed to increase the current paths for ESD stress currents. For example, more rings may be applied. The present invention also provides circuit embodiments for ESD protection. According to one embodiment, an ESD protection circuit comprising four parasitic BJTs may be configured to protect the I / O pads or the power rail. More BJTs or resistors may be used to increase the current paths for ESD stress currents. Several variations and modifications may be made by changing the doping profiles of the doped regions.
Owner:HIMAX TECH LTD

Doping profiles in PN diode optical modulators

High speed optical modulators can be made of a lateral PN diode formed in a silicon optical waveguide, disposed on a SOI or other silicon based substrate. A PN junction is formed at the boundary of the P and N doped regions. The depletion region at the PN junction overlaps with the center of a guided optical mode propagating through the waveguide. Electrically modulating a lateral PN diode causes a phase shift in an optical wave propagating through the waveguide. Each of the doped regions can have a stepped or gradient doping profile within it or several doped sections with different doping concentrations. Forming the doped regions of a PN diode modulator with stepped or gradient doping profiles can optimize the trade off between the series resistance of the PN diode and the optical loss in the center of the waveguide due to the presence of dopants.
Owner:CISCO TECH INC

Exponentially doped layers in inverted metamorphic multijunction solar cells

A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell, including providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a grading interlayer over the second subcell, the grading interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the grading interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mis-matched with respect to the second subcell, wherein at least one of the bases of a solar subcell has an exponentially doped profile.
Owner:SOLAERO TECH CORP

Double silicon-on-insulator device and method therefor

An integrated circuit chip wherein one or more semiconductor devices are completely isolated from bulk effects of other semiconductor devices in the same circuit and a method of making the integrated circuit chip. The devices may be passive devices such as resistors, or active devices such as diodes, bipolar transistors or field effect transistors (FETs). A multi-layer semiconductor body is formed of, preferably silicon and silicon dioxide. A conducting region or channel is formed in one or more of the layers. For the FET, silicon above and below the channel region provides controllable gates with vertically symmetrical device characteristics. Buried insulator layers may be added to isolate the lower gate of individual devices from each other and to create multiple vertically stacked isolated devices. Both PFET and NFET devices can be made with independent doping profiles in both depletion and accumulation modes.
Owner:GLOBALFOUNDRIES INC

Lateral MOSFET

A lateral MOSFET formed in a substrate of a first conductivity type includes a gate formed atop a gate dielectric layer over a surface of the substrate, a drain region of a second conductivity type, a source region of a second conductivity type, and a body region of the first conductivity type which extends under the gate. The body region may have a non-monotonic vertical doping profile with a portion located deeper in the substrate having a higher doping concentration than a portion located shallower in the substrate. The lateral MOSFET may be drain-centric, with the source region and an optional dielectric-filled trench surrounding the drain region.
Owner:ADVANCED ANALOGIC TECHNOLOGIES INCORPORATED +1

Dark Current Reduction in Back-Illuminated Imaging Sensors and Method of Fabricating Same

A method for fabricating a back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate, and resulting imaging device is disclosed. The device includes an insulator layer; a semiconductor substrate, having an interface with the insulator layer; an epitaxial layer grown on the semiconductor substrate by epitaxial growth; and one or more imaging components in the epitaxial layer in proximity to a face of the epitaxial layer, the face being opposite the interface of the semiconductor substrate and the insulator layer, the imaging components comprising junctions within the epitaxial layer; wherein the semiconductor substrate and the epitaxial layer exhibit a net doping concentration having a maximum value at a predetermined distance from the interface of the insulating layer and the semiconductor substrate and which decreases monotonically on both sides of the profile from the maximum value within a portion of the semiconductor substrate and the epitaxial layer. The doping profile between the interface with the insulation layer and the peak of the doping profile functions as a “dead band” to prevent dark current carriers from penetrating to the front side of the device.
Owner:SRI INTERNATIONAL

Method of fabricating heterojunction photodiodes integrated with cmos

A method in which thin-film p-i-n heterojunction photodiodes are formed by selective epitaxial growth / deposition on pre-designated active-area regions of standard CMOS devices. The thin-film p-i-n photodiodes are formed on active areas (for example n<+>-doped), and these are contacted at the bottom (substrate) side by the "well contact" corresponding to that particular active area. There is no actual potential well since that particular active area has only one type of doping. The top of each photodiode has a separate contact formed thereon. The selective epitaxial growth of the p-i-n photodiodes is modular, in the sense that there is no need to change any of the steps developed for the "pure" CMOS process flow. Since the active region is epitaxially deposited, there is the possibility of forming sharp doping profiles and band-gap engineering during the epitaxial process, thereby optimizing several device parameters for higher performance. This new type of light sensor architecture, monolithically integrated with CMOS, decouples the photo-absorption active region from the MOSFETs, hence the bias applied to the photodiode can be independent from the bias between the source, drain, gate and substrate (well) of the MOSFETs.
Owner:QUANTUM SEMICON

Back-illuminated imaging device and method of fabricating same

A method for fabricating a back-illuminated semiconductor imaging device on a thin semiconductor-on-insulator substrate, and resulting imaging device. Resulting device has a monotonically varying doping profile which provides a desired electric field and eliminates a dead band proximate to the backside surface.
Owner:SRI INTERNATIONAL

Phase change memory having one or more non-constant doping profiles

A phase change memory device with a memory element including a basis phase change material, such as a chalcogenide, and one or more additives, where the additive or additives have a non-constant concentration profile along an inter-electrode current path through a memory element. The use of “non-constant” concentration profiles for additives enables doping the different zones with different materials and concentrations, according to the different crystallographic, thermal and electrical conditions, and different phase transition conditions.
Owner:IBM CORP +1

Method and fine-control collimator for accurate collimation and precise parallel alignment of scanned ion beams

In a system for implanting workpieces with an accurately parallel scanned ion beam, a fine-control collimator construct is used to reduce the deviation of the scanned ion beam from a specified axis of parallelism and thereby improve its collimation. The shape of the fine-control collimator matches the ribbon shape of the beam and correction of parallelism in two orthogonal directions is possible. Measurement of the non-parallelism is accomplished by sampling the scanned beam in two planes and comparing timing information; and such measurement is calibrated to the orientation of the workpiece in the plane where ion implantation occurs. Measurement of non-uniformity in the doping profile is accomplished using the same means; and the scan waveform is adjusted to substantially remove any non-uniformity in the doping profile.
Owner:WHITE NICHOLAS R

Junction Termination Extension with Controllable Doping Profile and Controllable Width for High-Voltage Electronic Devices

Methods for producing a junction termination extension surrounding the edge of a cathode or anode junction in a semiconductor substrate, where the junction termination extension has a controlled arbitrary lateral doping profile and a controlled arbitrary lateral width, are provided. A photosensitive material is illuminated through a photomask having a pattern of opaque and clear spaces therein, the photomask being separated from the photosensitive material so that the light diffuses before striking the photosensitive material. After processing, the photosensitive material so exposed produces a laterally tapered implant mask. Dopants are introduced into the semiconductor material and follow a shape of the laterally tapered implant mask to create a controlled arbitrary lateral doping profile and a controlled lateral width in the junction termination extension in the semiconductor.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

High-voltage vertical transistor with a multi-gradient drain doping profile

A high-voltage transistor includes first and second trenches that define a mesa in a semiconductor substrate. First and second field plate members are respectively disposed in the first and second trenches, with each of the first and second field plate members being separated from the mesa by a dielectric layer. The mesa includes a plurality of sections, each section having a substantially constant doping concentration gradient, the gradient of one section being at least 10% greater than the gradient of another section. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:POWER INTEGRATIONS INC

CMOS imaging for ALC and CDS

Embodiments of the invention provide pixel cells that allow both automatic light control and correlated double sampling operations. The pixel cell includes first and second photo-conversion devices that can be separately read out. For example, the second photo-conversion device can be the pixel cells' floating diffusion region, with an area and doping profile suitable for photo-conversion. An image sensor may include an array of pixel cells, some or all of which have two photo-conversion devices, and peripheral circuitry for reading out signals from the pixel cells. The image sensor's readout circuitry may monitor charge generated by the second photo-conversion devices to determine when to read out signals from the first photo-conversion devices.
Owner:APTINA IMAGING CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products