Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

198 results about "Independent clock" patented technology

In telecommunications networks, independent clocks are free-running precision clocks located at the nodes which are used for synchronization. Variable storage buffers, installed to accommodate variations in transmission delay between nodes, are made large enough to accommodate small time departures among the nodal clocks that control transmission. Traffic may occasionally be interrupted to allow the buffers to be emptied of some or all of their stored data.

Synchronizing clocks across a communication link

Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. After initialization, all slave clock errors are preferably accumulated to prevent long-term slip between the slave and master clocks. Formerly independent master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks, and the secondary independent clocks may then be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
Owner:WI LAN INC

Variably delayable transmission of packets between independently clocked source, intermediate, and destination circuits while maintaining orderly and timely processing in one or both of the intermediate and destination circuits

In a system having independently-clocked job-performing circuits (e.g., payload processors) and independently-clocked job-ordering circuits (e.g., request and payload suppliers), coordinating mechanisms are provided for coordinating exchanges between the independently-clocked circuits. The coordinating mechanisms include those that use transmitted time-stamps for scheduling contention-free performances within the job-performing circuits of requested jobs. The coordinating mechanisms additionally or alternatively include static and dynamic rate constraining means that are configured to prevent a faster-clocked one of the independently-clocked circuits from overwhelming a more slowly-clocked other of the independently-clocked circuits. In one implementation, independently-clocked telecommunication-shelves house a distributed set of line cards and switch cards. An asynchronous interconnect is provided between the independently-clocked shelves for carrying job requests and payload data between the distributed line cards and the distributed switch cards. The multi-shelf system is scalable and robust because additional or replacement line and switch cards may be inserted into one or another of the independently-clocked shelves as desired and because a unified clock-tree is not needed for synchronizing activities within the interconnected, but independently clocked shelves.
Owner:MICROSEMI STORAGE SOLUTIONS US INC

Synchronizing clocks across a communication link

Apparatus, system and method for synchronizing one or more clocks across a communication link. A slave clock may be synchronized to a master clock by means of a synchronization signal sent from the master to the slave clock side of the link. The synchronization signal may be an expected signal pattern sent at intervals expected by the slave side. The slave clock may correlate received signals with a representation of the expected synchronization signal to produce a correlation sample sequence at a first sample rate which is related as n times the slave clock rate. The synchronization signal receipt time indicated by the correlation sample sequence may be refined by interpolating the correlation sample sequence around a best correlation sample to locate a best interpolation at an interpolation resolution smaller than the sample resolution. The best interpolation may in turn be further refined by estimating between interpolator outputs adjacent to the best interpolation output. The synchronization signal receipt time thus determined is compared to the expected time based upon the slave clock, which is adjusted until the times match. After initialization, all slave clock errors are preferably accumulated to prevent long-term slip between the slave and master clocks. Formerly independent master and slave clocks synchronized across the communication link constitute a noncommon clock which may be compared on each side of the link to secondary independent clocks, and the secondary independent clocks may then be separately synchronized by adjusting one to have the same difference from its local noncommon clock as the secondary clock on the other side of the link has from its local noncommon clock.
Owner:WI LAN INC

SOPC (System on a Programmable Chip) networking based sub-microsecond level clock synchronizing method and system

The invention provides an SOPC (System on a Programmable Chip) networking based sub-microsecond level clock synchronizing method. The clock synchronizing method comprises the steps of synchronizing UTC (Universal Time Coordinated) of a remote reference primary parent clock with UTC from an external GPS (Global Positioning System) clock or a Big Dipper system clock; synchronizing each node of a local first-level PTP (Precision Time Protocol) domain with the remote reference primary parent clock through a network switching device which supports a transparent clock function; receiving an optimal primary clock from a network at the same level by each Zynq platform based slave clock which supports IEEE158V2 protocol and gigabit Ethernet for time synchronization and frequency synchronization; when a PTP domain at the next level synchronizes with the primary parent clock through a border clock, performing clock synchronization by a primary clock at the upper level; and during the period that the PTP domain at the same level masters an independent clock synchronization control right, selecting the optimal primary clock as the primary clock of the network at the same level through an optimal primary clock algorithm. The invention also provides an SOPC networking based sub-microsecond level clock synchronizing system which adopts the clock synchronizing method.
Owner:CENT SOUTH UNIV

Variably delayable transmission of packets between independently clocked source, intermediate, and destination circuits while maintaining orderly and timely processing in one or both of the intermediate and destination circuits

In a system having independently-clocked job-performing circuits (e.g., payload processors) and independently-clocked job-ordering circuits (e.g., request and payload suppliers), coordinating mechanisms are provided for coordinating exchanges between the independently-clocked circuits. The coordinating mechanisms include those that use transmitted time-stamps for scheduling contention-free performances within the job-performing circuits of requested jobs. The coordinating mechanisms additionally or alternatively include static and dynamic rate constraining means that are configured to prevent a faster-clocked one of the independently-clocked circuits from overwhelming a more slowly-clocked other of the independently-clocked circuits. In one implementation, independently-clocked telecommunication-shelves house a distributed set of line cards and switch cards. An asynchronous interconnect is provided between the independently-clocked shelves for carrying job requests and payload data between the distributed line cards and the distributed switch cards. The multi-shelf system is scalable and robust because additional or replacement line and switch cards may be inserted into one or another of the independently-clocked shelves as desired and because a unified clock-tree is not needed for synchronizing activities within the interconnected, but independently clocked shelves.
Owner:MICROSEMI STORAGE SOLUTIONS US INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products