Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

212results about How to "Maintenance operation" patented technology

Wind turbine having a control method and controller for performing predictive control of a wind turbine generator

The application describes a wind turbine having a control method and controller for performing predictive control of a wind turbine generator. Based on the measured instantaneous wind speed, it is known to provide control signals to a wind turbine in order to control the pitch of the wind turbine rotor blades and the speed of the generator. However, it is difficult using instantaneous wind speed measurements to achieve smooth control, due to finite response speeds of the associated electro-mechanical systems, as well as the constantly changing control system inputs. The predictive control system described in the application assumes a model of generator speed based on the values of the incident wind speed v(t) and the values of a control signal u(t) output to the wind turbine in a feed forward loop. Here, the control signal can be for one or more of controlling either the power setting of the generator, or the pitch angle of the rotor blades. The predictive controller uses a rolling time series of values for v(t) and u(t) and based on a predicted response of the generator speed w(t) optimises the time series control signal u(t). The predicted response of the generator speed w(t) is based on model, that can be refined in real time as the wind turbine operates.
Owner:VESTAS WIND SYST AS

Wind turbine having a control method and controller for performing predictive control of a wind turbine generator

The application describes a wind turbine having a control method and controller for performing predictive control of a wind turbine generator. Based on the measured instantaneous wind speed, it is known to provide control signals to a wind turbine in order to control the pitch of the wind turbine rotor blades and the speed of the generator. However, it is difficult using instantaneous wind speed measurements to achieve smooth control, due to finite response speeds of the associated electro-mechanical systems, as well as the constantly changing control system inputs. The predictive control system described in the application assumes a model of generator speed based on the values of the incident wind speed v(t) and the values of a control signal u(t) output to the wind turbine in a feed forward loop. Here, the control signal can be for one or more of controlling either the power setting of the generator, or the pitch angle of the rotor blades. The predictive controller uses a rolling time series of values for v(t) and u(t) and based on a predicted response of the generator speed w(t) optimizes the time series control signal u(t). The predicted response of the generator speed w(t) is based on model, that can be refined in real time as the wind turbine operates.
Owner:VESTAS WIND SYST AS

Transport Refrigeration system

A transport refrigeration system, the transport refrigeration system including a container defining an enclosed volume and a refrigeration module coupled to the container. The refrigeration module is disposed to regulate the temperature of the enclosed volume and includes a compressor having a discharge port and a suction port, a condenser heat exchanger unit operatively coupled to the discharge port, an evaporator heat exchanger unit operatively coupled to the suction port, a condenser fan disposed proximate to the condenser heat exchanger unit, an evaporator fan disposed proximate to the evaporator heat exchanger unit; and a suction modulation valve coupled to the suction port. The transport refrigeration system further includes a bypass module coupled to the refrigeration module. The bypass module includes: a bypass mode switch having a normal operation position and bypass operation position; and an operational mode switch having a full cool position and fan only position. The transport refrigeration system also includes an electronic controller coupled to the bypass module. When the bypass mode switch is in the normal operation position the electronic controller regulates the operation of the refrigeration module. When the bypass mode switch is in the bypass operation position, the compressor, the condenser fan, the evaporator fan and the suction modulation valve are selectively operated by the position of the operational mode switch.
Owner:CARRIER CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products