Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1926 results about "Drop out" patented technology

Automated medication dispenser with remote patient monitoring system

A medication dispensing unit comprising a carousel defining a plurality of compartments, each of the compartments adapted to store a dose of medication is disclosed. The dispensing unit also comprises a housing that has a surface adapted to receive the carousel. The housing defines a receptacle and an access aperture that communicates between the receptacle and the surface that is adapted to receive the carousel. One of the compartments is positioned to communicate with the receptacle through the access aperture. The unit also comprises a dosing drawer that is positioned within the receptacle and communicates with the access aperture to receive a dose of medication from the compartment through the access aperture. The dosing drawer includes a normally closed trap door that, when opened, allows a dose of medication in the drawer to drop out of the dosing drawer. The dispensing unit comprises a recovery drawer that is positioned within the receptacle and communicates with the dosing drawer through the trap door, and receives a dose of medication from the dosing drawer when the trap door is opened. The medication dispensing unit also comprises means for rotating the carousel and a microcontroller that defines dosing period, determines that the patient has accessed the dosing drawer within a dosing period, and locks the recovery drawer.
Owner:RAPID PATIENT MONITORING

Electric rotating machine

For achieving small-sizing and high efficiency by improving heat radiation of coils, and further for simple-construction to be easily disassembled, thereby being environment-friendly from a view point of recycling, an electric rotating machine comprising: a stator 1a being constructed by inserting coils 10a into slots 11 of a stator core 2a; an outer frame 4 being divided into a plurality thereof, so as to cover periphery of the stator core of said stator; a pair of bearing holder portions 6a and 6b, each having a fitting portion 35a or 35b to be fitted into an inner diameter reference surface 25a at both end portions of said stator and being provided with a bearing 8a or 8b at an axial center portion thereof, and being attached at both sides of said stator core so as to cover coil end portions dropping out at both sides of said stator; a squeezing mechanism (30, 32a, 32b, 6a, 6b) fixing the outer frame at an outer periphery of the stator core, by a wedge function between each of the bearing holder portions and the outer frame due to a squeezing function of attaching the each of said pair of bearing holder portions at both sides of said stator core; and a rotor 3 being formed with an escaping portion for escaping from an outer diameter of a portion opposing to a fitting portion of each of said bearing holder portion, rotatably positioned within said stator core.
Owner:HITACHI LTD

Double-sideband suppressed-carrier radar to null near-field reflections from a first interface between media layers

A ground-penetrating radar comprises a software-definable transmitter for launching pairs of widely separated and coherent continuous waves. Each pair is separated by a constant or variable different amount double-sideband suppressed carrier modulation such as 10 MHz, 20 MHz, and 30 MHz Processing suppresses the larger first interface reflection and emphasizes the smaller second, third, etc. reflections. Processing determines the electrical parameter of the natural medium adjacent to the antenna.
The modulation process may be the variable or constant frequency difference between pairs of frequencies. If a variable frequency is used in modulation, pairs of tunable resonant microstrip patch antennas (resonant microstrip patch antenna) can be used in the antenna design. If a constant frequency difference is used in the software-defined transceiver, a wide-bandwidth antenna design is used featuring a swept or stepped-frequency continuous-wave (SFCW) radar design.
The received modulation signal has a phase range that starts at 0-degrees at the transmitter antenna, which is near the first interface surface. After coherent demodulation, the first reflection is suppressed. The pair of antennas may increase suppression. Then the modulation signal phase is changed by 90-degrees and the first interface signal is measured to determine the in situ electrical parameters of the natural medium.
Deep reflections at 90-degrees and 270-degrees create maximum reflection and will be illuminated with modulation signal peaks. Quadrature detection, mixing, and down-conversion result in 0-degree and 180-degree reflections effectively dropping out in demodulation.
Owner:STOLAR

Hydraulic fracturing technology for horizontal well with fractures

ActiveCN103953323APromote formationReduced breakage conditionsFluid removalHorizontal stressMulti cluster
The invention discloses a hydraulic fracturing technology for a horizontal well with fractures. The hydraulic fracturing technology comprises the following steps in sequence: (1), according to on-site information, calculating the stress difference values caused by major fractures and adjacent fractures; (2), according to the stress difference values caused by the major fractures and the adjacent fractures, calculating the pressure required when the fracture turns; (3), according to the pressure required when the fracture turns, determining the intensity of temporary plugging agents, and calculating the corresponding construction displacement; (4), according to the design parameters, conducting the segmental multi-cluster fracturing and impulse-type temporary plugging pressurizing technology on a reservoir stratum simultaneously. The hydraulic fracturing technology is mainly based on the horizontal stress difference drop-out values caused by the major fractures and the adjacent fractures, and simultaneously adopts the segmental multi-cluster fracturing and impulse-type temporary plugging pressurizing technology to force the fracture to turn, breaks through the technical bottleneck that the fractures are difficult to form in the stratum with a high stress difference and rudimentary natural fractures, and fills in the blank in the prior art.
Owner:SOUTHWEST PETROLEUM UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products