Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

321results about "Magnetic layer protection" patented technology

Magnetic tape device and head tracking servo method

The magnetic tape device includes: a magnetic tape; and a servo head, in which a magnetic tape transportation speed of the magnetic tape device is equal to or lower than 18 m / sec, the servo head is a TMR head, the magnetic tape includes a non-magnetic support, and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, the magnetic layer includes a servo pattern, the magnetic layer includes one or more components selected from the group consisting of fatty acid and fatty acid amide, and a C—H derived C concentration calculated from a C—H peak area ratio of C1s spectra obtained by X-ray photoelectron spectroscopic analysis performed on a surface of the magnetic layer at a photoelectron take-off angle of 10 degrees is 45 to 65 atom %.
Owner:FUJIFILM CORP

Magnetic tape device and head tracking servo method

The magnetic tape device includes: a magnetic tape; and a servo head, in which the servo head is a TMR head, the magnetic tape includes a non-magnetic support, and a magnetic layer including ferromagnetic powder, a binding agent, and fatty acid ester on the non-magnetic support, the magnetic layer includes a servo pattern, full widths at half maximum of spacing distribution measured by optical interferometry regarding a surface of the magnetic layer before and after performing a vacuum heating with respect to the magnetic tape are greater than 0 nm and equal to or smaller than 7.0 nm, and a difference between a spacing measured by optical interferometry regarding the surface of the magnetic layer after performing the vacuum heating with respect to the magnetic tape and a spacing measured before performing the vacuum heating is greater than 0 nm and equal to or smaller than 9.0 nm.
Owner:FUJIFILM CORP

Magnetic disk and method of manufacturing the same

Disclosed is a magnetic disk that has excellent durability, particularly excellent LUL durability, and excellent alumina resistance and has a high level of reliability under a low flying height of a magnetic head involved in a recent tendency toward a rapid increase in recording density and a very severe environment resistance requirement due to diversified applications. A magnetic disk (10) comprises a substrate (1) and at least a magnetic layer (6), a carbon-based protective layer (7), and a lubricating layer (8) provided in that order over the substrate (1). The lubricating layer (8) contains a compound that has a perfluoropolyether main chain in the structure thereof and has an aromatic group and a polar group at the end of the molecule.
Owner:WESTERN DIGITAL TECH INC

Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content

A method for making a magnetic disk comprises forming first and second protective carbon layers on a magnetic layer. The first protective carbon layer is predominantly SP3 carbon. The second protective carbon layer comprises about 50% or less SP3 carbon. The second protective carbon layer is very thin, e.g. between 0.1 and 1.0 nm thick. A lubricant layer (e.g. a perfluoropolyether lubricant) is applied to the second protective carbon layer. The second protective carbon layer facilitates improved cooperation between lubricant and the disk.
Owner:WESTERN DIGITAL TECH INC

Systems and Methods for Surface Modification by Filtered Cathodic Vacuum Arc

Provided are filtered cathodic vacuum arc systems useful for modifying a surface of a substrate (e.g. depositing a thin film of a material onto a surface of a substrate and / or implanting a material into the near-surface region of a substrate). The systems are configured to stabilize a do arc discharge plasma from an arc source. Also provided are methods for modifying a surface of a substrate, which in some cases includes depositing a material onto a surface of a substrate, in some cases includes implanting a material into the near-surface region of a substrate, and in some cases includes both depositing a material onto a surface of a substrate and implanting a material into the near-surface region of a substrate using the subject cathodic arc systems. In addition, magnetic recording media produced by the subject systems and methods are provided.
Owner:NAT UNIV OF SINGAPORE +1

Laser textured magnetic disk comprising NiNb

A method for manufacturing a magnetic disk comprises the steps of depositing NiP (20) on a substrate (22); depositing NiNb (24) on the NiP; and laser texturing the NiNb. "Sombrero" shaped texture features are more easily formed on the substrate / NiP / NiNb structure than a substrate / NiP structure. The disk is completed by depositing an underlayer (e.g. sputtered Cr or NiP), a magnetic layer (e.g. a Co alloy) and a protective overcoat (e.g. by hydrogenated carbon).
Owner:KOMAG

Perpendicular magnetic recording medium and process for manufacture thereof

An object of the present invention is to provide a perpendicular magnetic recording medium the SNR of which is improved by reducing noise thought to be due to an auxiliary recording layer so that a higher recording density can be achieved, and a method of manufacturing the same.In order to achieve the above object, a representative configuration of a perpendicular magnetic recording medium 100 according to the present invention includes, on a base, at least a magnetic recording layer 122 having a granular structure in which a non-magnetic grain boundary portion is formed between crystal particles grown in a columnar shape; a non-magnetic split layer 124 disposed on the magnetic recording layer 122 and containing Ru and oxygen; and an auxiliary recording layer 126 that is disposed on the split layer 124 and that is magnetically approximately continuous in an in-plane direction of a main surface of the base 110.
Owner:WESTERN DIGITAL TECH INC

Lubricant for magnetic disc, magnetic disc and method of producing the same

A magnetic disk with which further reduction of magnetic spacing can be realized and which has high reliability under such circumstances of a lower floating amount of a magnetic head involved in the recent rapid increase in recording density and of extremely severe environmental resistance involved in diversification in use applications is provided.In a magnetic disk in which at least a magnetic layer, a protective layer, and the lubrication layer are sequentially provided on a substrate, the lubrication layer contains a lubricant compound for a magnetic disk, having a perfluoropolyether main chain in the molecular structure and a structure indicated as follows at a position close to the center of the molecule:-0-CH2—CH(OH)—CH2—CH2—CH(OH)—CH2-0-or-0-CH2—CH(OH)—CH(OH)—CH2-0-
Owner:WESTERN DIGITAL TECH INC

Solid body surface evaluation method, magnetic disk evaluation method, magnetic disk, and manufacturing method thereof

In a method of evaluating surface tension of a solid body surface, selection is made of at least three liquid samples having different surface tensions, and contact angles between the respective liquid samples and the solid body surface are measured. Thereby, a correlation between cosines (Y) of the contact angles and surface tensions (X) of the liquid samples is derived as a logarithmic function. Surface tension of the solid body surface is evaluated by the use of a value of X that is calculated by substituting 1 for Y in the correlation. When evaluated by the foregoing evaluation method, a magnetic disk has a surface where the value of X, when 1 is substituted for Y, is greater than 0 and no greater than 17 mN / m.
Owner:WD MEDIA SINGAPORE PTE

Lubricant compound for a magnetic disk, magnetic disk, and method of manufacturing the same

In a magnetic disk that has at least a magnetic layer, a carbon-based protective layer, and a lubricating layer formed in this order over a substrate, the lubricating layer contains a lubricant compound including a compound which has a perfluoropolyether main chain in a structure thereof, an aromatic group located at a position except each end of a molecule thereof, and a polar group at each end of the molecule.
Owner:WESTERN DIGITAL TECH INC

Magnetic disk and method of producing the same

A magnetic disk includes a substrate on which a nonmagnetic metal layer, a magnetic layer, a carbon-based protection layer, an alcohol-based coupling layer, and a lubrication layer successively formed thereon. The lubrication layer contains a hydroxyl- or a carboxyl-modified compound as a lubricating material. The alcohol-based coupling layer contains, for example, lower alcohol as a main component and is deposited on the carbon-based protection layer, for example, by vapor deposition. The alcohol-based coupling layer may be replaced by a layer containing lower alcohol. The carbon-based protection layer may be deposited by plasma CVD.
Owner:WESTERN DIGITAL TECH INC

Magnetic disk and method of manufacturing same

Disclosed is a method of manufacturing magnetic disks, comprising a magnetic layer, a protective layer, and a lubricating layer on a substrate. In the process, a lubricant alpha comprising a compound denoted by chemical formulaHO—CH2—CH(OH)—CH2—O—CH2—CF2(—O—C2F4)p-(O—CF2)q-O—CF2—CH2—O—CH2—CH(OH)—CH2—OHwherein p and q are natural number,and a compound denoted by chemical formulaHO—CH2—CF2(—O—C2F4)m-(O—CF2)n-O—CF2—CH2—OHwherein m and n are natural number,is fractionated by molecular weight to prepare a lubricant a having a weight average molecular weight (Mw) of from 3,000 to 7,000 and a molecular weight dispersion of less than or equal to 1.2;a lubricant beta comprising a compound denoted by the chemical formulaHO—CH2—CF2(—O—C2F4)m-(O—CF2)n-O—CF2—CH2—OHwherein m and n are natural number,is fractionated by molecular weight to prepare a lubricant b having a weight average molecular weight (Mw) of from 2,000 to 5,000 and a molecular weight dispersion of less than or equal to 1.2;a lubricant c comprising a mixture of lubricants a and b is prepared; anda film of lubricant c is formed on a protective layer provided on a substrate to form a lubricating layer. A magnetic disk comprising a magnetic layer, a protective layer, and a lubricating layer on a substrate, in which the lubricating layer has been formed on the protective layer is also enclosed.
Owner:WD MEDIA SINGAPORE PTE

Magnetic recording disk and method for manufacture thereof

In order to obtain a magnetic recording disk that exhibits high reliability even if the flying height of a magnetic head becomes very narrow, a lubricant is specified in terms of both molecular structure and quantitative data. That is, a lubricating layer 14 of the magnetic recording disk 1 is formed by a lubricant which contains perfluoropolyether compounds represented by the following chemical formula (Chemical Formula 1) and which has a first component content of 71.7%, a second component content of 15.7%, a third component content of 11.7%, a fourth component content of 0.3%, and a fifth component content of 0.6%:X—OCH2CF2—(CF2O)m(C2F4O)n—CF2OCH2O—X  (Chemical Formula 1)m, n=9 to 11first component: X=X1=CH2CH(OH)CH2OHsecond component: X=X2=CH2CH(OH)CH2OCH2CH(OH)CH2OHthird component: X=X3=Hfourth component: X=X4=CF3 fifth component: X=X5=CF2Cl.
Owner:WD MEDIA SINGAPORE PTE

Magnetic disk and manufacturing method thereof

In a magnetic disk having a magnetic layer, a protection layer, and a lubrication layer formed on a substrate in this order, a surface free energy γS of a surface of the magnetic disk derived by an extended Fowkes equation is greater than 0 and no greater than 24 mN / m. γSd (dispersion force component of surface free energy) forming the surface free energy γS is greater than 0 and no greater than 17 mN / m, γSp (dipole component of surface free energy) forming the surface free energy γS is greater than 0 and no greater than 1 mN / m, and γSh (hydrogen bonding force component of surface free energy) forming the surface free energy γS is greater than 0 and no greater than 6 mN / m.
Owner:WD MEDIA SINGAPORE PTE

Magnetic disk and manufacturing method thereof

A magnetic disk is provided which is excellent in durability of the magnetic disk or particularly in LUL durability and CFT characteristics and has high reliability under a decreased floating amount of the magnetic head accompanying the recent rapid increase in a recording density and extremely severe environmental resistance accompanying diversification of the applications.The magnetic disk of the present invention is a magnetic disk having at least a magnetic layer, a carbon protective layer, and a lubrication layer sequentially provided on a substrate, and the lubrication layer is a film formed by a lubricant that contains two types of compounds having a perfluoropolyether main chain in the structure, a molecular weight distribution of the two types in total being within a range of 1 to 1.2, the two types of compounds including a compound a having a hydroxyl group at the end and a compound b having a number average molecular weight smaller than the number average molecular weight of the compound a and not more than 1500, and a content of the compound b in the two types of compounds being not more than 10%.
Owner:WESTERN DIGITAL TECH INC

Method of producing a perpendicular magnetic recording medium and perpendicular magnetic recording medium

An object of the present invention is to provide a perpendicular magnetic recording medium including a suitable lubricating layer with sufficient durability, moisture resistance, and contamination resistance and also maintaining an R / W characteristic. In a typical structure of the present invention, a method of manufacturing a perpendicular magnetic recording medium 100 including a magnetic recording layer 122, a medium protective layer 126, and a lubricating layer 128 in this order on a base 110 includes: a CF bond density measuring step of measuring a CF bond density of a lubricant; and a lubricating layer forming step of forming a lubricating layer with the lubricant when the measured CF bond density is 2.0×1022 to 2.7×1022 atoms / cm3.
Owner:WD MEDIA SINGAPORE PTE

Solvent compositions comprising unsaturated fluorinated hydrocarbons

Disclosed is a method for removing residue from a surface comprising: contacting the surface with a composition comprising at least one unsaturated fluorinated hydrocarbon selected from the group consisting of compounds having the formula E- or Z-R1CH═CHR2, wherein R1 and R2 are, independently, C1 to C6 perfluoroalkyl groups, or C1 to C6 hydrofluoroalkyl groups, and recovering the surface from the composition.
Owner:THE CHEMOURS CO FC LLC

Magnetic disk and method of manufacturing the same

Provided is a magnetic disk comprising a lubricating layer formed of a lubricant. The lubricant constituting the lubricating layer has excellent properties, for example, excellent fluidity, surface energy, and CFT properties. By virtue of the excellent properties, the magnetic disk has a high level of reliability despite a low flying height of a magnetic head due to a recent rapid increase in recording density and a very severe environment resistance requirement due to diversification of applications. The magnetic disk comprises a substrate and at least a magnetic layer, a protective layer, and a lubricating layer provided in that order over the substrate. The lubricating layer is formed of a lubricant that is a mixture of a specific perfluoropolyether lubricant with a lubricant formed of a compound comprising perfluoropolyether groups having a perfluoropolyether main chain in the structure thereof and having a hydroxyl group at the end thereof, the perfluoropolyether groups being bonded to each other through a divalent linking group having at least two hydroxyl groups in the structure thereof.
Owner:WESTERN DIGITAL TECH INC

Magnetic recording disk and process for manufacture thereof

A magnetic recording disk has a high-adhesion lubricant layer that permits an operation at an extremely low level of flying height of 12 nm or less without troubles and which is capable of preventing the migration at a high-speed rotation, and comprises a substrate, a magnetic layer formed on the substrate, a protective layer formed on the magnetic layer and a lubricant layer formed on the protective layer, the lubricant layer containing a compound (A) of the general formula (I), wherein each of p and q is an integer of 1 or more, anda compound (B) having a perfluoropolyether main chain having two end moieties each of which contains a carbon atom or an oxygen atom to which a hydroxyl-containing hydrocarbon group that optionally contains ether bond(s) is bonded, and a process for the manufacture thereof is provided.
Owner:WESTERN DIGITAL TECH INC

Solvent compositions comprising unsaturated fluorinated hydrocarbons

This invention relates to cleaning compositions comprising unsaturated fluorinated hydrocarbons. The invention further relates to use of said cleaning compositions in methods to clean, degrease, deflux, dewater, and deposit fluorolubricant. The invention further relates to novel unsaturated fluorinated hydrocarbons and their use as cleaning compositions and in the methods listed above.
Owner:THE CHEMOURS CO FC LLC

Magnetic recording disk and method for manufacture thereof

In a magnetic recording disk 1 including a magnetic layer 12, a protective layer 13, and a lubricating layer 14, the lubricating layer 14 is made from a lubricant prepared from a composition. The weight change of the lubricant ranges from −20% to −50% at 300° C. in the case where the lubricant is subjected to thermogravimetric analysis in such a manner that the lubricant is heated from 40° C. to 500° C. at a heating rate of 10° C. / min. The lubricant has a maximum peak at about 300° C. in the case where the lubricant is subjected to differential thermal analysis in the same manner as described above. The lubricant can be quantitatively measured for heat resistance. Therefore, a magnetic recording disk exhibiting stable performance at high temperatures and a method for manufacturing such a magnetic recording disk can be obtained.
Owner:WD MEDIA SINGAPORE PTE

Evaluation method of magnetic disk, manufacturing method of magnetic disk, and magnetic disk

InactiveUS20120077060A1Easily evaluate propertyAccurately evaluate propertyMagnetic materials for record carriersRecord information storageCarbon filmRadial position
An evaluation method that can easily evaluate properties of a carbon protective film and a lubricant on a magnetic-disk surface or particularly, an evaluation method of a magnetic disk in which the properties of the magnetic-disk surface can be evaluated accurately so that a strict demand for interactions between the magnetic-disk surface and a head can be met is provided. In a state in which an element portion of the magnetic head provided with the head element portion that projects by thermal expansion is projected, after being brought into contact with a predetermined radial position on the surface of the rotating magnetic disk, the head is further made to perform seeking in a state in which the element portion is projected by a specified amount, whereby the properties of the carbon film or the lubricant formed on the magnetic-disk surface is evaluated.
Owner:WD MEDIA SINGAPORE PTE

Manufacturing method of magnetic recording medium

A manufacturing method of a magnetic recording medium provided with a protective layer excellent in corrosion resistance, mechanical durability, adhesion with a lubrication layer, and floating stability of a head even if the film thickness is reduced is provided. This is a manufacturing method of a magnetic recording medium in which at least a magnetic layer, a carbon protective layer, and a lubrication layer are sequentially provided on a substrate, and said carbon protective layer is provided with a lower layer formed on the magnetic layer side and an upper layer formed on the lubrication layer side. The lower layer is formed by a chemical vapor deposition (CVD) method using hydrocarbon gas and then, the upper layer is formed by using mixed gas of hydrocarbon gas and nitrogen gas and then, treatment which nitridizes the surface of the upper layer is applied.
Owner:WD MEDIA SINGAPORE PTE

Magnetic disk and manufacturing method thereof

A magnetic disk comprises a magnetic layer and a protective layer sequentially formed on a disk-shaped substrate and has a principal surface to which data is recorded, and a side surface portion both of which are coated with the protective layer. The protective layer on the side surface portion is thinner than the protective layer on the principal surface. Preferably, the side surface portion includes a side wall surface, and a chamfered surface lying between the side wall surface and the principal surface, and at least the protective layer on the chamfered surface is thinner than the protective layer on the principal surface.
Owner:WESTERN DIGITAL TECH INC

Method of manufacturing a magnetic disk

On manufacturing a magnetic disk having at least a magnetic layer (60), a protective layer (70), and a lubricating layer (80) formed in this order over a substrate (10), the lubricating layer is formed by using a coating solution in which a perfluoropolyether compound having a perfluoropolyether main chain and a hydroxyl group in a structure thereof is dispersed and dissolved in a fluorine-based solvent having a boiling point of 90° C. or more.
Owner:WD MEDIA SINGAPORE PTE

Energy gradient ion beam deposition of carbon overcoats on rigid disk media for magnetic recordings

InactiveUS7018729B2Good mechanical and corrosion protectionWithout degrading magnetic property of magneticVacuum evaporation coatingSputtering coatingSputteringEnergy gradient
The fabrication of the overcoat layer starts with a low energy ion beam to avoid magnetic layer implantation problems, followed by higher deposition energies where the higher energy atoms are implanted into the previously formed lower energy overcoat layer, rather than the magnetic layer. The energy gradient ion beam deposition process therefore results in a thin overcoat layer that is denser than a comparable layer formed by low energy magnetron sputtering, and which overcoat layer provides good mechanical and corrosion protection to the magnetic layer, without degrading the magnetic properties of the magnetic layer.
Owner:WESTERN DIGITAL TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products