Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

140results about "Naked nucleic acid ingredients" patented technology

Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same

ActiveUS20140079774A1Promoting death of cancer cellEfficient packagingBiocideSpecial deliveryLipid formationBinding peptide
The present invention is directed to protocells for specific targeting of hepatocellular and other cancer cells which comprise a nanoporous silica core with a supported lipid bilayer; at least one agent which facilitates cancer cell death (such as a traditional small molecule, a macromolecular cargo (e.g. siRNA or a protein toxin such as ricin toxin A-chain or diphtheria toxin A-chain) and/or a histone-packaged plasmid DNA disposed within the nanoporous silica core (preferably supercoiled in order to more efficiently package the DNA into protocells) which is optionally modified with a nuclear localization sequence to assist in localizing protocells within the nucleus of the cancer cell and the ability to express peptides involved in therapy (apoptosis/cell death) of the cancer cell or as a reporter, a targeting peptide which targets cancer cells in tissue to be treated such that binding of the protocell to the targeted cells is specific and enhanced and a fusogenic peptide that promotes endosomal escape of protocells and encapsulated DNA. Protocells according to the present invention may be used to treat cancer, especially including hepatocellular (liver) cancer using novel binding peptides (c-MET peptides) which selectively bind to hepatocellular tissue or to function in diagnosis of cancer, including cancer treatment and drug discovery.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC +1

Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same

The present invention is directed to protocells for specific targeting of hepatocellular and other cancer cells which comprise a nanoporous silica core with a supported lipid bilayer; at least one agent which facilitates cancer cell death (such as a traditional small molecule, a macromolecular cargo (e.g. siRNA or a protein toxin such as ricin toxin A-chain or diphtheria toxin A-chain) and / or a histone-packaged plasmid DNA disposed within the nanoporous silica core (preferably supercoiled in order to more efficiently package the DNA into protocells) which is optionally modified with a nuclear localization sequence to assist in localizing protocells within the nucleus of the cancer cell and the ability to express peptides involved in therapy (apoptosis / cell death) of the cancer cell or as a reporter, a targeting peptide which targets cancer cells in tissue to be treated such that binding of the protocell to the targeted cells is specific and enhanced and a fusogenic peptide that promotes endosomal escape of protocells and encapsulated DNA. Protocells according to the present invention may be used to treat cancer, especially including hepatocellular (liver) cancer using novel binding peptides (c-MET peptides) which selectively bind to hepatocellular tissue or to function in diagnosis of cancer, including cancer treatment and drug discovery.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC +1

Implantable liposome embedded matrix composition, uses thereof, and polycaprolactone particles as scaffolds for tissue regeneration

In various embodiments, the present invention describes materials and methods for the local reprogramming of cells in a location where the treatment is applied. The invention can be used to replace lost cells or to restore function to tissue damaged due to disease, injury or genetic defect. In various embodiments, the treatment includes a semisolid hydrogel embedded with liposomes. The liposomes can contain an effector molecule or molecules. When phagocytic cells such as monocytes infiltrate the hydrogel, they encounter the liposomes and incorporate the liposomes carrying the effector molecules into the cells. In some embodiments, the effector molecules can be genetic material encoding the expression of specific proteins such as transcription factors, the expression of which can initiate the reprogramming of the cells. In other embodiments, the effector molecules can induce angiogenesis. In other embodiments, the effector molecules are tumor antigens. The matrix can contain other effector molecules designed to attract specific cells to the matrix. The cells can be released from the matrix as the matrix degrades or by active migration from the matrix. The cells can also remain in the matrix and secret molecules such as proteins and hormones that will diffuse through the matrix material to the surrounding tissue.
Owner:SCHUBERT HLDG

Implantable liposome embedded matrix composition, uses thereof, and polycaprolactone particles as scaffolds for tissue regeneration

ActiveUS20150050332A1Organic active ingredientsPeptide/protein ingredientsDiseaseMononuclear cell infiltration
In various embodiments, the present invention describes materials and methods for the local reprogramming of cells in a location where the treatment is applied. The invention can be used to replace lost cells or to restore function to tissue damaged due to disease, injury or genetic defect. In various embodiments, the treatment includes a semisolid hydrogel embedded with liposomes. The liposomes can contain an effector molecule or molecules. When phagocytic cells such as monocytes infiltrate the hydrogel, they encounter the liposomes and incorporate the liposomes carrying the effector molecules into the cells. In some embodiments, the effector molecules can be genetic material encoding the expression of specific proteins such as transcription factors, the expression of which can initiate the reprogramming of the cells. In other embodiments, the effector molecules can induce angiogenesis. In other embodiments, the effector molecules are tumor antigens. The matrix can contain other effector molecules designed to attract specific cells to the matrix. The cells can be released from the matrix as the matrix degrades or by active migration from the matrix. The cells can also remain in the matrix and secret molecules such as proteins and hormones that will diffuse through the matrix material to the surrounding tissue.
Owner:BONUS CELLORA LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products