Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

598results about "Optical transmission" patented technology

Method of activating optical communication system, channel increasing/decreasing method, and computer-readable recording medium

The invention relates to a method of activating an optical communication system comprising a plurality of optical amplifiers having an optical amplifier, between optical transmission lines in which wavelength-division multiplex optical signals are transmitted. The method comprises steps of: generating a desired slope in a desired wavelength range of a gain wavelength curve of the optical amplifier; adjusting an output of the optical amplifier to a desired output level; performing the above two steps in a plurality of optical repeater stations, the steps being carried out in sequence from the first to the last optical repeater stations; and adjusting a level in each optical signal in the wavelength-division multiplex optical signal so as to have substantially constant optical signal-to-noise ratios in the optical signals to be received. Activating the optical communication system according to this procedure allows proper execution of gain slope compensation, output control, and pre-emphasis control.
Owner:FUJITSU LTD

Signal transmission system and method for supervising the same

A signal transmission system includes an interface unit that monitors the operating condition of each device. The signal transmission system also includes a simulator that simulates the transmission quality of the system in response to the operating condition of each device, and controls each device so as to optimize the transmission quality.
Owner:HANGER SOLUTIONS LLC

Power and optical frequency monitoring system and transmission system of frequency-modulated optical signal

The present invention relates to a monitoring system that observes the power and optical frequency of a frequency-modulated optical signal, which is utilized in the communication network employing the WDM (wavelength division multiplexing) method. The monitoring system comprises demultiplex means for demultiplexing the frequency-modulated optical signal outputted from a transmitter including frequency-modulation means, photo-detection means for converting the output of demultiplex means into an electrical signal, and extraction means for extracting the power and optical frequency of an optical signal by measuring the magnitude of an amplitude-modulated tone.
Owner:KOREA ADVANCED INST OF SCI & TECH

Pre-equalized optical transmitter and pre-equalized optical transmission system

Provided is a pre-equalized optical transmitter, comprises: a laser source; a duo-binary pre-coder circuit; a pre-equalization circuit for applying an inverse function of chromatic dispersion; at least two D / A converters; and an optical field modulator comprising at least two input terminals for an electric signal. The pre-equalized optical transmitter: converts, by the duo-binary pre-coder circuit, a digital information signal of a predetermined symbol time to be transmitted into a digital complex signal including one sampling point per symbol; equalizes, by the pre-equalization circuit, degradation in transmission of the digital complex signal; converts, by the D / A converters, the equalized digital complex signal into an analogue signal; suppresses an analogue signal leaking outside a Nyquist bandwidth by at least 23 dB; modulates, by the optical field modulator, light output from the laser source with the analogue signal to generate a modulated optical field signal; and transmits the modulated optical field signal.
Owner:HITACHI LTD

Optical receiving device, waveform optimization method for optical data signals, and waveform optimization program for optical data signals

This optical receiving device for discriminating and recovering a data signal, which results from converting an optical signal input through a dispersion equalizer into an electrical signal and amplifying it to a pre-determined amplitude, by using a clock and data recovery circuit for discriminating a data signal at the decision point controlled to achieve the optimum position controls the dispersion characteristics of a dispersion equalizer so that the error count in the recovered data signal by using a clock and data recovery circuit will be minimized by controlling the eye pattern of the data signal which has been amplified to a pre-determined amplitude.
Owner:NEC CORP

Optical network loss-of-signal detection

Loss of optical signal is detected in a synchronous communications system by detecting features of a monitor signal occurring at a detection frequency corresponding to the frame rate. Since the frame rate is substantially less than the bit rate, monitoring and detection can be performed at a lower bandwidth than the bit rate. An auto-correlation circuit utilises delays which are an integral multiple of the frame rate and produces a detection value which is compared with a threshold value. Alternatively, detection may be based on a power measurement of a band pass filtered monitor signal by setting the lower bandwidth limit above zero frequency and normalizing the measurement of power relative to an average power measurement. A loss of signal may then be detected by a change in power measurement relative to a threshold and can be used for asynchronous systems as well as synchronous systems. Loss of signal detection may be utilised to control an optical switch to re-route optical signals and generate alarm signals. The use of such detection in all optical networks avoids the requirement for electronic processing at the bit rate as a means of detection of loss of signal.
Owner:CIENA

Optical surface plasmon-wave communications systems

A plurality of optical communications systems including a SPW modulator are described. The communications systems include an optical transmitter coupled to an optical fiber communications link which carries a optically modulated information signal to an optical receiver. The laser transmitter includes a laser light source which is optically coupled to a SPW modulator which has been particularly adapted for broadband communications by selecting its transfer characteristic and modulation structure. A broadband signal containing a plurality of information channels, for example CATV channels, is applied to it modulator electrodes. The modulation signal varies the power coupling between the guided laser light source signal and a SPW in the modulator. The result is an intensity modulated optical signal that is output to the optical fiber for transmission to the optical receiver of the system. Alternatively, the communications system includes a high power laser coupled to an optical splitter to divide its output power in two or more optical source outputs. Each optical source output is then used to drive an associated SPW modulator. Each of the modulators receives a broadband signal with which to modulate its optical source. After modulation, the modulated lightwave from a modulator is coupled to a corresponding optical fiber for carriage to an optical receiver. In this manner, several broadband information signals can be communicated over the system using only one laser source. A net benefit from using one higher power laser, rather than several lower power ones, is one of cost, purity and similarity of the several signals. This configuration is enhanced by the lower loss and higher linearity of the SPW modulators. Further, several WDM embodiments including those having serially cascaded SPW modulators are provided. The transfer characteristic of the SPW modulators are tailored to either be more efficient for an analog or a digital modulation signal by adding or subtracting grating effects.
Owner:VERIFIBER TECH

Tunable coherent optical receiver and method

The invention provides a tunable coherent optical receiver and a related method wherein the receiver uses low-frequency trace-tone modulation of optical WDM channels at transmission as channel IDs in order to detect which optical channels are present in the received optical WDM signal. The receiver than discriminates between the thereby detected optical channels by tuning a local oscillator to one of the received optical channels as determined based on the presence of the low-frequency tones in the received optical signal.
Owner:LUMENTUM OPERATIONS LLC

Non-linearity compensation in an optical transmission

A method of transmitting information over a non-linear optical channel includes the step (152) of generating an information-bearing signal, preferably an OFDM signal, which includes a plurality of closely-spaced sub-carriers in the frequency domain. A time-varying phase modulation is determined (154), which is a first function, and preferably a linear function, of the transmitted optical power corresponding with the information-bearing signal. The information-bearing signal and the time-varying phase modulation are applied (156) to an optical source in order to generate a corresponding transmitted optical signal having substantially the stated transmitted optical power characteristic. The first function of transmitted optical power is selected so as to mitigate the effect of the non-linearity of the optical channel upon the transmitted optical signal. In alternative arrangements, a time-varying phase modulation, being a second function of optical power, is computed (162) and applied (164) to a signal received following transmission through a non-linear optical channel. The two alternative arrangements provide, respectively, for pre-compensation and post-compensation of non-linear propagation effects that may be carried out entirely within the electrical domain, for example using digital signal processing techniques.
Owner:MONASH UNIV

Optical communication system incorporating automatic dispersion compensation modules

In accordance with the invention, an optical communication system is provided with one or more automatic dispersion compensation modules. Each module has an adjustable dispersion element, a data integrity monitor and a feedback network whereby the monitor adjusts the dispersion element to optimize system performance. In a preferred embodiment the dispersion compensating modules comprise chirped fiber Bragg gratings in which the chirp is induced in the grating by passing a current along distributed thin film heaters deposited along the length of the fiber. The magnitude of the applied current determines the dispersion of the grating. A data integrity monitor is configured to sense the integrity of transmitted data and to provide electrical feedback for controlling the current applied to the grating.
Owner:FURAKAWA ELECTRIC NORTH AMERICA INC

Smart connect

To automate fiber connectivity management in optical systems, a dedicated low bit-rate communications channel unique to each fiber connection in an optical system is provided. The dedicated communications channel simplifies fiber connectivity management by supporting the exchange of port identification information from one optical component to another after which processing determines if the specific connection is a desired association. The dedicated communications channel supports optical interconnection surveillance for all card-to-card optical connections within a group of related cards or within an optical network link. Automating fiber connectivity management in this manner will enhance future products by simplifying the fiber connection validation process and ensuring that any specific connection between optical components is the required association. This will be particularly useful in complex optical environments with many interconnected devices and where troubleshooting faulty connections would be time-consuming and, therefore, very costly.
Owner:CIENA

Skew suppression method and optical transmission system

A method for suppressing a skew between a first channel and a second channel in an optical transmission system having a transmitter that transmits an optical signal with the first channel and the second channel and a receiver that receives the optical signal, the method includes: controlling dispersion added to the optical signal to be larger than a specified amount; and controlling a delay time of at least one of the first channel and the second channel in the receiver based on a quality of the optical signal monitored in the receiver to suppress the skew between the first channel and the second channel in the receiver.
Owner:FUJITSU LTD

Optical amplifier

There is provided an optical amplifier for reducing the optical output power difference and / or obtaining high output power across a wide wavelength band. The optical amplifier comprises a plurality of optical amplifier units connected in two or more stages. At least one of the optical amplifier units comprises a first optical component of a single input and N outputs that has an optical-demultiplexing function, and P units of optical amplification means for the individual amplification of light that is output from P (where 1<=P<=N) output terminals selected from the N (integer) output terminals of the first optical component. Second optical components are provided to the input side of the first optical component or between the output side of the first optical component and the input side of the optical amplification means. The second optical components are optical components having chromatic dispersion compensation functions, optical components having functions designed to compensate for wavelength dependency output power difference, or optical components demonstrating other required effects. The optical components are DCFs, FBGs, SMFs, optical filters, attenuators, or the like. The second optical components are provided nonselectively or selectively.
Owner:HANGER SOLUTIONS LLC

Optical network terminator

An optical network terminator for terminating and reducing the accumulated noise in optical networks, particularly ring based networks. The terminator eliminates problems of noise accumulation from amplifier spontaneous emission (ASE), thermal noise, etc., while providing bi-directional communications in the optical network. The optical network may have any topology including ring, star, mesh, point-to-point, etc. In the case of an optical ring, the ring is broken and an optical terminator is placed in line therewith. The optical network terminator includes a filer such as an optical demultiplexer / multiplexer or Fiber Bragg Grating (FBG) based filter. Each individual wavelength of light is filtered and a multi-wavelength optical output is generated whereby the noise accumulation is removed. Each channel is adapted to only pass a band-limited signal around the center frequency corresponding to the wavelengths supported by the particular optical ring network. Channel equalization uses variable optical attenuators and monitors in line with each channel. Channels currently not in use may be disconnected from the ring remotely by setting the corresponding optical attenuator to a low enough level.
Owner:VENTURE LENDING & LEASING III

Optical transmission system with automatic signal level adjustment and startup functions

An optical transmission system with automatic startup functions to optimize the power level of optical signals entering each optical amplifier and operate those amplifiers in appropriate mode. In the process of starting up an optical transmission system, upstream and downstream optical transmission devices set up themselves under the coordination of their internal controllers. The downstream device controller adjusts its local variable optical attenuator by utilizing optical noise emission from a post-amplifier in the upstream optical transmission device, and it selects and sets a preamplifier unit to work in appropriate operating mode. The upstream device controller, on the other hand, selects and sets operating mode of its local post-amplifier unit. During this process, the upstream and downstream device controllers exchange messages over supervisory control channels to achieve the purpose.
Owner:FUJITSU LTD

Optical amplifier

An optical amplifier is provided for performing amplification of optical signals of two wavelength bands, where deterioration in the optical SN ratio relative to one wavelength band is reduced, with a simple construction which can deal with restrictions on installation space, power consumption and the like. To this end, the present optical amplifier has a C / L band optical amplifying section for amplifying respective optical signals of a C band and an L band, a demultiplexer for demultiplexing output light from the C / L band optical amplifying section into the C band and the L band, an L band optical amplifying section for amplifying L band optical signals which have been demultiplexed by the demultiplexer, and a multiplexer for multiplexing the C band optical signals which have been demultiplexed by the demultiplexer and the L band optical signals which have been amplified by the L band optical amplifying section. The construction is such that a part of excitation light of a 1480 nm band used in the C / L band optical amplifying section is supplied via an input terminal to a Raman amplification producing medium of a transmission path, and Raman amplified L band optical signals are input to the C / L band optical amplifying section.
Owner:FUJITSU LTD

Transmission of supervisory data in an optical communication system

A system for converting a first and a second signal representative of payload and supervisory information, respectively, between an electrical format (PL, S) and a WDM optical format, includes: a first converter (L1, P1) for converting the first signal between the electrical format (P, L) and a first disaggregated optical format, a second converter (L2, P2) for converting the second signal between the electrical format (S) and a second disaggregated optical format, and an optical WDM converter (WDM-C, WDM-S) for converting the first and second signals between the aforesaid first and second disaggregated optical formats and the WDM aggregated optical format. The first converter (L1, P1), the second converter (L2, P2) and the optical WDM converter (WDM-C, WDM-S) are integrated to a single self-contained module (TM1, RM1). The arrangement is adapted to be implemented as a transmitter, a receiver as well as a transceiver module.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Optical fiber communication system incorporating automatic dispersion compensation modules to compensate for temperature induced variations

A high speed optical communication system (>=10 Gbit / s) is compensated for temperature variation by providing it with one or more automatic dispersion compensation modules. Each module has an adjustable dispersion element, a data integrity monitor and a feedback network whereby the monitor adjusts the dispersion element to compensate for temperature variation. In a preferred embodiment the dispersion compensating modules comprise chirped fiber Bragg gratings in which the chirp is induced in the grating by passing a current along distributed thin film heaters deposited along the length of the fiber. The magnitude of the applied current determines the dispersion of the grating. A data integrity monitor is configured to sense the integrity of transmitted data and to provide electrical feedback for controlling the current applied to the grating.
Owner:FURAKAWA ELECTRIC NORTH AMERICA INC

Wavelength-division multiplexing optical transmission system

A new two-way WDM optical transmission system is provided. The WDM optical transmission system comprises a two-way optical fiber cable, a first dispersion compensation optical fiber (DCOF) connected to one end of the optical fiber cable, a second DCOF connected to another end of the optical fiber cable, a chromatic dispersion compensating transmitter unit and a chromatic dispersion compensating receiver unit. The two-way optical fiber cable comprises a plurality of segments. The first DCOF is connected to one end of the optical fiber cable and has a compensation amount of a half of a one segment dispersion Dc of the optical fiber cable. The second DCOF is connected to another end of the optical fiber cable and has the compensation amount of the half of the one segment dispersion Dc. And the chromatic dispersion compensating transmitter unit compensates accumulated residual chromatic dispersions to be caused by higher-order wavelength dispersion of the optical fiber cable at each signal wavelength. Further, the chromatic dispersion compensating receiver unit compensates accumulated residual chromatic dispersions caused by higher-order wavelength dispersion of the optical fiber cable at each signal wavelength. The chromatic dispersion compensating transmitter unit has a plurality of optical transmitters, a multiplexer combining a plurality of different wavelength bands and a plurality of chromatic dispersion compensators. And the chromatic dispersion compensating receiver unit has a demultiplexer, a plurality of optical receiver and a plurality of chromatic dispersion compensators.
Owner:KDDI CORP

Optical single sideband transmitter

With the normal modulation method, it is difficult to construct a Hilbert transform device because it is complicated. To solve the problem, a single sideband modulated optical pulse train is generated by driving a Mach-Zehnder optical modulator for optical pulse generation with a laser source's sine wave clock signals that have been rendered 90 degrees out of phase from each other. The generated pulse train is applied to an optical modulator, modulated with an NRZ (nonreturn-to-zero) data signal, and filtered by a narrow-band optical filter to obtain one of two sidebands.
Owner:HITACHI LTD

Simultaneous electrical pre-compensation of self-phase modulation and chromatic dispersion

The present invention includes a fast algorithm to compute the pre-equalized waveform for simultaneous compensation of the self-phase modulation and chromatic dispersion experienced by a high-speed optical signal, e.g., at 10 Gb / s, and shows that it is used for an automatic self-adapting pre-equalization when the knowledge on transmission link details is inaccurate or incomplete.
Owner:WSOU INVESTMENTS LLC +1

Pilot symbol aided carrier phase estimation

Methods and systems for processing an optical signal in a communication system are disclosed. The disclosed methods yield benefits for estimation and tracking of carrier phase of received signals at a digital coherent receiver. Specifically, phase ambiguity is removed by the insertion of pilot symbols into a transmitted data stream. Pilot symbols are detected from a received signal, and carrier phase is estimated for the detected pilot symbols. If carrier phase track of received data symbols was lost, a correction is applied to recover the track. Coherent symbol decoding may be used which has not been possible with prior art techniques due to the possibility of phase tracking loss.
Owner:SUBCOM LLC

Method for improving the performance of digital coherent optical receiver using single ended photo-detection

A method and system for mitigating distortion in coherent single-ended photo-detection is disclosed. The methodology comprises: receiving an optical signal carried on an optical transmission medium and coherently detecting the received optical signal to produce a digitized signal; estimating a time-dependent random variable introducing distortion to the coherently detected signal; and subtracting the distortion from digitized signal to produce a distortion mitigated output signal.
Owner:AT&T INTPROP I L P

Optical transmitter, optical transmitter and receiver system, optical transmitting method and optical transmitting and receiving method

An optical transmitter includes: a pre-compensator calculating an electrical field of an optical signal subjected to an electronic pre-compensation with respect to an input digital signal; a parallelizer parallelizing the electrical field of the optical signal calculated by the pre-compensator; a plurality of optical modulators modulating an optical signal based on each of parallelized electrical fields of optical signals; and a time-division multiplexer time-division-multiplexing an optical signal output from the plurality of the optical modulators.
Owner:FUJITSU LTD

Non-linearity compensation in an optical transmission

A method of transmitting information over a non-linear optical channel includes the step (152) of generating an information-bearing signal, preferably an OFDM signal, which includes a plurality of closely-spaced sub-carriers in the frequency domain. A time-varying phase modulation is determined (154), which is a first function, and preferably a linear function, of the transmitted optical power corresponding with the information-bearing signal. The information-bearing signal and the time-varying phase modulation are applied (156) to an optical source in order to generate a corresponding transmitted optical signal having substantially the stated transmitted optical power characteristic. The first function of transmitted optical power is selected so as to mitigate the effect of the non-linearity of the optical channel upon the transmitted optical signal. In alternative arrangements, a time-varying phase modulation, being a second function of optical power, is computed (162) and applied (164) to a signal received following transmission through a non-linear optical channel. The two alternative arrangements provide, respectively, for pre-compensation and post-compensation of non-linear propagation effects that may be carried out entirely within the electrical domain, for example using digital signal processing techniques.
Owner:MONASH UNIV

Digital performance monitoring for an optical communications system

A digital performance monitoring method and system for an optical communications system utilizes a channel monitor and a digital signal processor (DSP). The channel monitor is designed to monitor a respective channel signal of the optical communications system, and includes a sample memory for storing sample data including a set of sequential N-bit (where N>1) samples generated by an Analog-to-Digital (A / D) converter at a predetermined sample rate. The digital signal processor (DSP) is designed to calculate at least one performance parameter of the optical communications system based on the stored sample data. The sample rate of the A / D converter is at least equal to a baud rate of the channel, and preferably satisfies the Nyquist criterion. Multiple A / D converters may be used parallel to sample respective orthogonal components of the channel signal. In this case, the stored sample data may be representative of the complex E-field of the channel signal.
Owner:CIENA

Optical transmission system for compensating for transmission loss

An optical transmission system for compensating for transmission loss includes a transmitting apparatus for serializing a plurality of n (n is a natural number)-bit channel data received from the outside in response to a predetermined clock signal, converting the serialized channel data and the predetermined clock signal into a current signal whose magnitude changes corresponding to an error detection signal, and outputting optical signals having optical output power corresponding to the magnitude of the current signal, a first optical fiber for transmitting the optical signals, a receiving apparatus for recovering the n-bit channel data and the predetermined clock signal from the optical signals received through the first optical fiber, detecting transmission loss generated when the optical signals are transmitted and received, optically converting the transmission loss, and outputting the optically converted transmission loss as the error detection signal, and a second optical fiber for transmitting the optical converted error detection signal to the transmitting apparatus. Since the receiving apparatus and the transmitting apparatus forms a closed loop, it is possible to keep optical efficiency uniform, corresponding to the transmission loss transmitted by the receiving apparatus. Also, the parallel / serial data converter is realized by the gate, it is possible to convert data at high speeds of greater than the GHz level and to reduce the size of the circuit. Also, it is possible to reduce power consumption since the non-overlapping clock signals whose frequencies are relatively low are used even when data is converted at high speeds greater than the GHz level.
Owner:SAMSUNG ELECTRONICS CO LTD

Reconfigurable multi-channel all-optical regenerators

An all-optical regenerating circuit including a wavelength converter based on a Mach-Zehnder interferometer. The input signal is amplified and the interferometer adjusted to place the input signal across an entire monotonic portion of a sinusoidal transfer function to the wavelength-converted output signal. Retiming is effected by wavelength converters including pulsed laser sources of the output wavelength. A multi-wavelength regenerator may be integrated on a chip including two arrayed waveguides and an array of tunable lasers on parallel waveguides therebetween.
Owner:RGT UNIV OF CALIFORNIA

Optical fiber amplifier and optical amplification method

An optical amplifier includes an erbium doped fiber of which at least one of a core part and a clad part is doped with erbium, excitation light sources or exciting the optical fiber, optical means for inputting excitation light from the excitation light source and signal light to the Er-doped fiber, and an optical isolator. The erbium doped fiber is a 1.58 mum band optical fiber having an equivalent fiber length as a product of a fiber length (m) and an erbium doping concentration (ppm by weight), which length provides a signal gain obtained at a wavelength of the excitation light source used for excitation of the erbium doped fiber of more than a predetermined practical reference value.
Owner:NIPPON TELEGRAPH & TELEPHONE CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products