Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

393 results about "Tire rotation" patented technology

Tire rotation is the practice of moving the wheels and tires of an automobile from one position to another, to ensure even tire wear. Even tire wear is desirable to extend the useful life of a set of tires.

Method and apparatus for determining tire condition and location

An apparatus (10) determines a tire condition and location on a vehicle (12) including a tire-based sensing unit (14), a plurality of tires (54) on the vehicle having an associated tire-based sensing unit, each tire-based sensing unit (14) including, a first tire rotation sensor (66) mounted for rotation with the tire (54) and for providing a first tire rotation signal (80) each time the tire passes one of at least two predetermined rotational positions during tire rotation, a tire condition sensor (82) for sensing a tire condition and for providing a tire condition signal indicative thereof and an unique tire identification indicator, a transmitter (86) for transmitting the tire condition signal and the unique tire identification indicator, and a controller for controlling the transmitter so that the transmission of the tire condition signal and the unique tire identification indicator occurs when the first tire rotation signal indicates the tire has reached one of the at least two predetermined rotational positions during tire rotation. The apparatus further includes a second tire rotation sensor (22) mounted external of the tire for sensing tire rotation and for providing a second tire rotation signal indicative of incremental angular position of the tire relative to a reference. A vehicle-based receiver (44) receives the transmitted tire condition signal, the unique tire identification indicator, and the second tire rotation signal and correlates reception of the tire condition signal with the second tire rotation signal so as to associate the unique tire identification indicator with a particular tire location on the vehicle.
Owner:TRW AUTOMOTIVE US LLC

Integrated self-powered tire revolution counter

A self-powered tire revolution counter includes a motion sensitive power generation mechanism, a power conditioner, a pulse detector, a microcontroller, and, optionally, a radio frequency (RF) transmitting device. In one exemplary embodiment, the power generation mechanism corresponds to a piezoelectric patch that, during movement, provides both operating electrical power and pulsed signals indicative of tire rotation. The power conditioner receives a generator signal from the power generation mechanism and produces a conditioned output voltage that can be used to power associated electronic devices, including the microcontroller. The pulse detector receives the generator signal and produces a detection signal whenever the generator signal meets a predetermined condition. The microcontroller is programmed to determine current and lifetime-accumulated values of selected pulse indications in the detection signal that meet predetermined criteria. Data corresponding to tire environment related parameters such as temperature, pressure, tire deflection, and / or vehicle speed may be stored in the microcontroller at times during tire rotation as power is supplied from the power generation mechanism through the power conditioner. Additional data may be supplied to the microcontroller directly from an external source and read from the microcontroller either by direct electrical contact or via selective RF transmission.
Owner:MICHELIN RECH & TECH SA

Intelligent Tire Inflation and Deflation System Apparatus

An intelligent tire pressure management system capable of real-time tire pressure monitoring, vehicle load detection, and automatic tire inflation and deflation for maintaining optimal tire pressure in a commercial vehicle. Additional functions include counting tire rotations for calculating and recording distance travelled for each tire, and detecting wheel sliding due to locked-up tires. The system includes a chassis-mounted control box connecting to the vehicle air supply, a hubcap-mounted dual wheel valve apparatus integrated with a rotary union assembly that connects through the vehicle hollowed axles to the air tubes from the control box. The inflation/deflation supporting dual wheel valve apparatus has an embedded electronic unit that monitors individual tire pressure and temperature in real time, and communicates with the control box over the power line. Furthermore a load sensor integrated with the control box provides the system with the current vehicle load information. With readily available real time tire pressure data and current vehicle load information, this system can intelligently adjusts tire pressure to the desired level when necessary and, as a result, prolongs tire life, improves fuel economy, reduces the vehicle maintenance costs, and promptly alerts the driver of low, leaky or flat tire conditions for enabling the driver to take immediate corrective actions.
Owner:ZHOU JOE HUAYUE +1

Universal Tire Pressure Monitoring System and Wireless Receiver

InactiveUS20080024287A1Easy to analyzeEfficient and optimized movement and transmissionVehicle testingRegistering/indicating working of vehiclesInformation processingEngineering
The present invention provides a universal receiver (OTR) device which functions within a vehicle in the “under-the-hood” (UTH) environment such that various types of tire pressure management system (TPMS) device, located within, upon or near a vehicle's tires can transmit tire information, such as the transmitter identification number (TIN), the tire unique identifier (TUID), the vehicle identification number (VIN), tire pressure, tire temperature, tire rotation, and other tire relevant data, to the OTR for further processing regardless of frequency, data transfer speed, or data format of the TPMS device. The OTR device in sequence: identifies the TPMS device, receives the tire information from the TPMS device, and processes the tire information into date records for efficient and optimized transmission of such data records for future analysis both within and off a vehicle. The OTR also interfaces with various types of telematics devices, regardless of the type of transmission or protocol used, by identifying the type of telematics device. The OTR also stores or retrieves information related to various telematics and TPMS devices in order to identify these devices. For example, an automotive manufacturer, dealership, or tire distributor would be able to select various manufacturers' TPMS and telematics devices for installation within the vehicle and with the OTR collect previously captured TPMS data for further analysis.
Owner:BOYLE SEAN ROBERT +2

Integrated self-powered tire revolution counter

A self-powered tire revolution counter includes a motion sensitive power generation mechanism, a power conditioner, a pulse detector, a microcontroller, and, optionally, a radio frequency (RF) transmitting device. In one exemplary embodiment, the power generation mechanism corresponds to a piezoelectric patch that, during movement, provides both operating electrical power and pulsed signals indicative of tire rotation. The power conditioner receives a generator signal from the power generation mechanism and produces a conditioned output voltage that can be used to power associated electronic devices, including the microcontroller. The pulse detector receives the generator signal and produces a detection signal whenever the generator signal meets a predetermined condition. The microcontroller is programmed to determine current and lifetime-accumulated values of selected pulse indications in the detection signal that meet predetermined criteria. Data corresponding to tire environment related parameters such as temperature, pressure, tire deflection, and/or vehicle speed may be stored in the microcontroller at times during tire rotation as power is supplied from the power generation mechanism through the power conditioner. Additional data may be supplied to the microcontroller directly from an external source and read from the microcontroller either by direct electrical contact or via selective RF transmission.
Owner:MICHELIN RECH & TECH SA

Magnetically coupled tire pressure sensing system

A tire pressure reporting and warning system employs low-cost passive magnetically coupled pressure senders within the tires. These senders employ permanent magnets that rotate in response to pressure and may conveniently be mounted on the valve stem. A sender comprises a high-permeability helical ribbon that translates in response to pressure and penetrates a magnetic circuit. The magnetic circuit rotates into alignment with the helical ribbon. A novel feature of this invention is the dual-purpose use of the magnet both as a means for producing rotation in response to pressure and simultaneously for producing the remotely sensed external magnetic field. The direction and strength of the external field depends both on the rotation of the magnet with respect to the tire and on the overall orbital motion as the tire rotates. Remote pressure readers at each wheel respond to the magnetic field components and interpret the response asymmetry in terms of tire pressure by continuously calculating response skew as the tires rotate. Analyzing skew obviates the need for tire rotation sensing and timing and eliminates magnetic strength effects. No special alignment is required between senders and readers, so the readers may be mounted rather arbitrarily nearby the vehicle wheels.
Owner:BURNS ALAN ALEXANDER

Intelligent tire inflation and deflation system apparatus

An intelligent tire pressure management system capable of real-time tire pressure monitoring, vehicle load detection, and automatic tire inflation and deflation for maintaining optimal tire pressure in a commercial vehicle. Additional functions include counting tire rotations for calculating and recording distance travelled for each tire, and detecting wheel sliding due to locked-up tires. The system includes a chassis-mounted control box connecting to the vehicle air supply, a hubcap-mounted dual wheel valve apparatus integrated with a rotary union assembly that connects through the vehicle hollowed axles to the air tubes from the control box. The inflation / deflation supporting dual wheel valve apparatus has an embedded electronic unit that monitors individual tire pressure and temperature in real time, and communicates with the control box over the power line. Furthermore a load sensor integrated with the control box provides the system with the current vehicle load information. With readily available real time tire pressure data and current vehicle load information, this system can intelligently adjusts tire pressure to the desired level when necessary and, as a result, prolongs tire life, improves fuel economy, reduces the vehicle maintenance costs, and promptly alerts the driver of low, leaky or flat tire conditions for enabling the driver to take immediate corrective actions.
Owner:ZHOU JOE HUAYUE +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products