Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

459results about "Endless-chain machines" patented technology

Windmill and windmill control method

A windmill includes a freely rotatable revolution shaft, a plurality of pairs of pivotal support rods provided at the revolution shaft, and wind receiving blades respectively and rotatably set between the pivotal support rods with wind receiving blade shafts. The windmill is applied to the driving of a lifting pump, a generator and the like by employing revolution driving force. An anemometer / anemoscope measures wind velocity and direction. A servo motor controls the direction of the wind receiving blades based on the detected velocity and direction. Various methods of control are also provided.
Owner:HIRAI TETSUO

Wave energy conversion device for desalination, ETC

An impulse-type “wave motor” employs a seabed-mounted or supported structure mounting a wave energy absorbing panel on a hinged lever arm for reciprocation motion to obtain optimal absorption of wave energy from wave motion in the sea. For deepwater wavelengths of L, the panel is optimally positioned in a region within L / 2 depth from the sea surface. The panel motion is coupled by a connecting rod to a fluid pump which generates a high-pressure fluid output that may be used to drive a reverse osmosis desalination unit or to produce other useful work. Seawater or brackish water may be desalinated through reverse osmosis membranes to produce water quality for consumption, agricultural, or other uses. The submerged operating environment of the device in a region of one-half the design wavelength provides the maximum available energy flux and forced oscillations. The pump may be of the positive-displacement piston type, plunger type, or multi-staging driver type, or a variable volume pump.
Owner:KOBASHIKAWA ALVIN +1

Vertically Adjustable Horizontal Axis Type Wind Turbine And Method Of Construction Thereof

The invention relates to methods of constructing and operating a wind turbine, said methods comprising the steps of lifting a wind turbine nacelle and tower sections with the use of an external lifting system, and using a lifting system to propel said nacelle vertically up and down said tower sections. The external lifting mechanism comprises a guide rail and guide car onto which tower sections are loaded for horizontal movement, a foundation structure joined to a tower section hoist mechanism containing clamps, and a nacelle holding mechanism. A nacelle includes a tower penetrating hole through which said tower vertically penetrates. Tower sections are provided with a plethora of guide rails positioned around said tower extending from the lower end to the upper end of said tower sections, said guide rails contain removable toothed racks meshing with said lifting system to propel said nacelle vertically up and down said tower sections.
Owner:WYBORN GAVIN RAYMOND

Methods and systems for transporting wind turbine components

A mounting system includes a plurality of adjacent railcars including a first railcar that includes spaced first and second wheel assemblies each including at least one wheel pair. The mounting system also includes a first and second frames coupled to the first railcar. The first frame includes a space defined between at least two portions of the first frame and at least one cushion selectively positionable within the first frame space. The second frame includes a space defined between at least two portions of the second frame and at least one cushion selectively positionable within said second frame space. The first and second frames are spaced to facilitate at least one of partially containing and partially supporting the load. The first frame is substantially centered over at least one first wheel assembly wheel pair, and the second frame is substantially centered over at least one second wheel assembly wheel pair.
Owner:GENERAL ELECTRIC CO

Up-wind type windmill and operating method therefor

A structure of an upwind type wind turbine and the operating method thereof capable of preventing the occurrence of damage of the blades by evading excessive irregular loads from acting on the blades in the slanting direction in the event of power failure when strong wind blows, are provided.In the upwind type wind turbine having a nacelle supported for rotation on a support, the nacelle is rotated to a downwind position by rotating it by 180° from a normal upwind position and kept in stand-by condition at a downwind position when detected wind speed is higher than the predetermined cutout wind speed, which is the reference wind speed for shifting to an idle operation state. When the detected wind speed is higher than the DWSS wind speed determined based on the maximum permissible instantaneous wind speed, the nacelle is rotated from an upwind position to a downwind position and the yaw brake is released.
Owner:MITSUBISHI HEAVY IND LTD

Habitat friendly, pressure conversion, wind energy extraction

A habitat friendly, pressure conversion, wind energy extraction system is disclosed for safely extracting usable energy from wind. The system includes one or more shrouds or concentrator wings that convert the dynamic pressure of wind into relatively lower static pressure and thereby induces a vacuum that draws wind into a turbine centralized within the shrouds or concentrator wings. As such, the turbine impellor blades may be significantly smaller than the large diameter rotor blades of current popular designs and may be enclosed within the shrouds or concentrator wings that present themselves as highly visible objects and as such are easily avoided by birds in flight. The novel system in particular includes a device and method of airflow regulation than minimizes or prevents the stalling, or the generation of a turbulent flow of wind over or between the shrouds or concentrator wings. This stalling has been shown to occur when airflow is quickly accelerated by force of vacuum and drawn out of the turbine shroud which then mixes with and disturbs the otherwise smooth flow of wind over or between the shrouds or concentrator wings. The system may also include an aerobrake that responds quickly to protect the impellor blades or associated mechanisms from overspeeding or exceeding other design limitations under gusting or violent wind conditions. The system may also include a method of guiding elements of the system to orient appropriately into prevailing winds, and a method to support elements of the system, without unduly impeding the free flow of wind. Other advantages and objects are as well disclosed that increase safety and efficiency, increase installation potential, reduce costs and expenses, and minimize negative environmental impact.
Owner:TOCHER ANGUS J

Wave energy conversion device for desalination, ETC

An impulse-type "wave motor" employs a seabed-mounted or supported structure mounting a wave energy absorbing panel on a hinged lever arm for reciprocation motion to obtain optimal absorption of wave energy from wave motion in the sea. For deepwater wavelengths of L, the panel is optimally positioned in a region within L / 2 depth from the sea surface. The panel motion is coupled by a connecting rod to a fluid pump which generates a high-pressure fluid output that may be used to drive a reverse osmosis desalination unit or to produce other useful work. Seawater or brackish water may be desalinated through reverse osmosis membranes to produce water quality for consumption, agricultural, or other uses. The submerged operating environment of the device in a region of one-half the design wavelength provides the maximum available energy flux and forced oscillations. The pump may be of the positive-displacement piston type, plunger type, or multi-staging driver type, or a variable volume pump.
Owner:KOBASHIKAWA ALVIN +1

Methods and apparatus for advanced wind turbine design

A wind turbine system includes a variable blade assembly including adjustable sails and wing shaped masts expanding the wind velocity capture envelope. The blade assembly turns a hydraulic pump, which pressurizes fluid and stores the pressurized fluid in a chamber in the support tower. Pressurized fluid is directed via an electronically controllable proportioning valve to a hydraulic motor which is coupled to an electric generator. A computer control module operates the proportioning valve regulating pressure to the hydraulic motor, maintaining generator rotational speed, and providing consistent output frequency to the power grid. Stored energy in the high pressure tank is used to continue generator operation after the winds cease, allowing early warning notification to the power management system of impending power loss. Residual pressure maintained in the high pressure tank allows restart operations via hydraulic pressure rather than power grid energy drain. On site high energy capacitors store additional energy.
Owner:MCCLINTIC FRANK

Power loss reduction in turbulent wind for a wind turbine using localized sensing and control

A wind turbine blade assembly includes at least one local load sensor disposed on and / or within a surface of the wind turbine blade and at least one active flow modification device disposed on and / or within a surface of the wind turbine blade and configured to alter the aerodynamics of the wind turbine blade in response to real time local load sensor measurements such that a difference between a current angle of attack and an optimum angle of attack on the wind turbine blade is substantially minimized.
Owner:GENERAL ELECTRIC CO

Wind turbine system for satisfying low-voltage ride through requirement

A wind turbine system is provided with a wind turbine rotor, a pitch control mechanism, and an emergency power supply mechanism. The wind turbine rotor includes a blade having a variable pitch angle. The pitch control mechanism drives the blade to control the pitch angle. The emergency power supply mechanism generates electric power from rotation of the wind turbine rotor and feeds the electric power to the pitch control mechanism, in response to occurrence of an accidental drop of a system voltage of a power grid.
Owner:MITSUBISHI HEAVY IND LTD

Hydro-wind power generating turbine system and retrofitting method

An electrical power producing wind turbine eliminates the possibility of being struck by lightning, reduces the complexity of gear trains and simplifies maintenance at heights. The wind turbine is electrically isolated from ground to reduce the possibility of being struck by lightning and the generator is located at ground level to simplify maintenance. The turbine blade shaft is directly attached to a hydraulic pump. The hydraulic fluid is transmitted to ground level through dielectric tubing and acts both as an electrical isolating medium and a transmitter of mechanical energy to the generator located at ground level. The wind turbine blade, shaft and hydraulic pump are electrically isolated from the support structure at the upper end.
Owner:PERRY ROBERT NELSON

Vertical axis wind turbine

The vertical axis wind turbine has two counter-rotating rotors mounted on first and second spaced apart vertical axes. Each rotor has a plurality of rotor blades extending generally inwardly from an outer circumference, the vertical axes being mounted on a support structure which is in turn rotatable on a third vertical axis on a platform. The third axis is spaced from a point midway between the first and second axes in a direction at 90 degrees to and forward from a line between the first and second axes. The vertical axis wind turbine further has a guide vane mounted on the support structure, having a vertex forward of the third vertical axis in the direction at 90 degrees from a line between the first and second axes. The guide vane has left and right symmetrical vane portions extending towards the rotors so as to direct airflow from wind primarily towards portions of the rotors outboard of the first and second axes. The guide vane also tends to keep the vertical axis wind turbine oriented with the guide vane's axis of symmetry pointing forwardly into the wind. Movable deflector flaps pivotally mounted adjacent opposite ends of the vane portions can deflect air at least partially away from the rotors. The structure of the wind turbine can support an unrelated structure such as a restaurant.
Owner:OHLMANN HANS ARMIN

Methods and apparatus for reduction of asymmetric rotor loads in wind turbines

A method for reducing load and providing yaw alignment in a wind turbine includes measuring displacements or moments resulting from asymmetric loads on the wind turbine. These measured displacements or moments are used to determine a pitch for each rotor blade to reduce or counter asymmetric rotor loading and a favorable yaw orientation to reduce pitch activity. Yaw alignment of the wind turbine is adjusted in accordance with the favorable yaw orientation and the pitch of each rotor blade is adjusted in accordance with the determined pitch to reduce or counter asymmetric rotor loading.
Owner:GE INFRASTRUCTURE TECH INT LLC

Habitat friendly, multiple impellor, wind energy extraction

A habitat friendly, wind energy system is disclosed for safely extracting usable energy from wind. Included are one or more concentrator wings that convert the dynamic pressure of wind into relatively lower static pressure and thereby induces a vacuum that draws wind into an area defined by the concentrator wings. The airflow regulation minimizes or prevents the stalling of, or the generation of a turbulent flow of wind over or between concentrator wings. Further included are multiple impellors, at least one power converter, a riser supporting these component pieces, all positioned within the area defined by the concentrator wings. Accordingly, one or more flow regulators are positioned to assist in promoting laminar flow across or between the concentrator wings and to reduce the dynamic pressure of wind on the riser to thereby increase efficiency of the system.
Owner:TOCHER ANGUS J

Shrouded wind turbine system with yaw control

A wind energy systems includes a shroud for each turbine. The shroud is adapted to direct and accelerate wind towards the turbine. A strong adaptable support assembly is provided for securing turbines to a structure. An air glide yaw assembly facilitates rotational movement of the structure allowing the turbines to face oncoming wind. The turbine blades are optimized for use with a shroud.
Owner:WIND ENERGY TECH LLC

Oscillation damping of a wind turbine

ActiveUS20080118342A1Reduce and avoid undesired oscillationLess materialPropellersWind motor controlMechanical impactTurbine
The invention relates to a wind turbine and a method for operating the wind turbine planted in the floor of a body of water. The wind turbine includes a support structure and a rotor, which is arranged on the support structure. The rotor has a rotor blade. The wind turbine operates in a trundle mode in order to reduce the oscillations in the support structure created through mechanical impacts on the support structure.
Owner:SENVION DEUT GMBH

Wind turbine system for satisfying low-voltage ride through requirement

A wind turbine system is provided with a wind turbine rotor, a pitch control mechanism, and an emergency power supply mechanism. The wind turbine rotor includes a blade having a variable pitch angle. The pitch control mechanism drives the blade to control the pitch angle. The emergency power supply mechanism generates electric power from rotation of the wind turbine rotor and feeds the electric power to the pitch control mechanism, in response to occurrence of an accidental drop of a system voltage of a power grid.
Owner:MITSUBISHI HEAVY IND LTD

Wind turbine yawing system, wind turbine and yawing process

InactiveUS20050196280A1Improve braking effectEasily replaced in repairPropellersWind motor controlGear wheelTower
A yawing system for a wind turbine, the wind turbine comprising a tower fixed to the ground and a frame (1) housing an electric power generator, the tower and the frame (1) being joined by the yawing system which allows the orientation of the frame (1) with respect to the tower according to the direction of the wind. The yawing system comprises: a gear ring (2) fixed to the tower, the gear ring having a sliding track (3) on which the frame (1) rests and slides in its yawing movement, at least one geared motor fixed to the frame (1), meshed with the gear ring (2) through a gear wheel, at least one active braking module (5), and at least one passive braking module (6). The invention further comprises a sliding track (3) and a friction track on the gear ring, this friction track (10) being different from the sliding track (3), and the active braking modules (5) and passive braking modules (6) comprising a friction plate (11) acting on the friction track (10) of the ring. The frame (1) rests on the gear ring (2) by means of horizontal plates (8) and radial plates (9) made of a sliding material, and are kept in their position by separating parts (7). Furthermore, the gear ring (2) is divided into gear-toothed circular segments to favor its repair. Other aspects are a wind turbine with the previous yawing system and a yawing process of a turbine by means of the previous yawing system.
Owner:GAMESA INNOVATION & TECH SA

Self-guiding wind turbine

A self-guiding wind turbine made of two reinforced parallel girders whose side center of thrust is displaced from the column axis where it is supported and turns. Its dihedral-shaped two-bladed rotor is self-stabilizing since its center of thrust is behind its center of gravity and the guiding axis of the turbine, thus improving self-guiding whilst in motion. The axial thrust is controlled, whilst the head and rotor are tilting, hydraulically by counter-pressure, ensuring they do not surpass the power collected and the moments on the structure, shoe and ground. The self-guiding structure can tilt hydraulically lowering its head and rotor and facilitating its assembly and maintenance, and can remain “asleep” when not in use, thus reducing the visual impact on the environment. This turbine makes use of the force of the wind to control itself, simplifying the manufacture of large turbines connected to the network or in isolated applications.
Owner:ANTOUNE IVAN LAHUERTA

Monitoring and data processing equipment for wind turbines and predictive maintenance system for wind power stations

A predictive maintenance system for wind parks, the wind park comprising a group of wind turbines (Ai), a communications network (RS) and a supervision and control system (ST) The predictive maintenance system comprises a monitoring and processing equipment (SMP) connected to the control system (PLC) of the wind turbine (Ai), such that the monitoring and processing equipment sends alarms through the control system of the wind turbine to the supervision and control system. The invention also refers to a monitoring and processing equipment (SMP) for wind turbines.
Owner:GAMESA INNOVATION & TECH SA

Wind turbine yaw control

A method for operating a wind farm is provided. The method includes determining a wind condition, determining a wake-effect between at least two wind turbines forming at least a sub-set of the wind farm, each of the at least two wind turbines having a yaw system, and determining a desired yaw angle setpoint for each of the at least two wind turbines so that a total power production of at least the sub-set is expected to be increased compared to independently operating the yaw systems of each of the at least two wind turbines. Furthermore, a wind farm is provided
Owner:GENERAL ELECTRIC CO

Apparatus and method for manipulating a component of a wind turbine

A wind turbine includes a tower member a yaw system, and a wind energy collection system. The wind energy collection system includes a central hub and a plurality of blade members. The wind turbine further includes a component manipulating system operatively coupled between at least one of the plurality of blade members and the tower member. The component manipulating system includes a blade member support structure including a first end pivotally connected relative to the tower member that extends to a second end operatively coupled to the one of the plurality of blade members, and a winching system operatively connected to the one of the plurality of blade members and the tower member. The winching system is selectively operated to shift the one of the plurality of blade members relative to the tower member in order to enable serving of the wind turbine.
Owner:GENERAL ELECTRIC CO

Methods and apparatus for reduction of asymmetric rotor loads in wind turbines

A method for reducing load and providing yaw alignment in a wind turbine includes measuring displacements or moments resulting from asymmetric loads on the wind turbine. These measured displacements or moments are used to determine a pitch for each rotor blade to reduce or counter asymmetric rotor loading and a favorable yaw orientation to reduce pitch activity. Yaw alignment of the wind turbine is adjusted in accordance with the favorable yaw orientation and the pitch of each rotor blade is adjusted in accordance with the determined pitch to reduce or counter asymmetric rotor loading.
Owner:GENERAL ELECTRIC CO

Vertical axis wind turbine with controlled gybing

A device for generating electricity in which wind blowing from any direction causes the rotation of sails around a vertical tower. As the sails rotate the sails moving toward the wind are automatically feathered, and the sails moving away from the direction of the wind are prevented from being feathered by sail restraints. An inner sail restraint positions each sail so that the sail gybes at an earlier time than would otherwise occur. An outer sail restraint “catches” the sail as it gybes, capturing much of the energy of the gybe, adding additional rotational force. The device may be used to extract energy from the wind to produce electricity.
Owner:MIGLER BERNARD

Wind power plant

A wind power plant for producing electrical energy on a large scale, comprising a base, a housing, rotatable on said base around vertical axis. A wind tail, attached to the housing, rotate the housing toward direction of the wind, utilizing the power of the wind, and produces additional tunnel suction to the flow of the wind from front side to back side of the housing. A plurality of turbines, equipped with rotors with wide blades, is mounted inside the housing one above another. Deflectors cover from the wind the front side of the rotors above their axis of rotation while computer controlled governors are covering the remaining front side of the rotors below their axis of rotation, keeping steady the speed of rotation of the rotors. Working surfaces of turbines are covered from heavy snow and during the storm and protected from birds. Power plant saves the area of occupied land, utilizing higher speed of wind on higher elevations. It has an attractive aesthetic view and can be a landmark for the location where it is built.
Owner:SOSONKINA YEVGENIYA

Wind power electric device and method

A wind-power unit has a wind turbine has an electric generator connected to the wind turbine. The stator of the generator has a winding formed of a high-voltage cable having a core of conducting material, a first layer of semiconducting material surrounding the core, an insulating layer of solid material surrounding the first layer, and a second layer of semiconducting material surrounding th solid insulation. The wind turbine has a plurality of turbine blades running vertically and being connected to a turbine shaft. The generator is arranged at the lower end of the turbine shaft. A wind-power plant; the use of a wind-power unit; and a method of generating electric power are described.
Owner:VERTICAL WIND AB

Downstream wind turbine

A downstream wind turbine for converting wind energy into electrical energy. In a preferred embodiment the downstream wind turbine adapted to respond to high winds and gyroscopic precession. The downstream wind turbine comprises a support tower; a yaw bearing attached to the support tower; a support frame operably linked to the bearing; at least one swing arm with one end pivotally attached to the support frame; an elongated carry member pivotally attached to the other end of the swing arm; a wind driven energy conversion system balanced on and attached to the carry member so that the carry member is biased to maintain an approximately horizontal orientation with respect to the support frame and in response to wind proportionally swings downstream, and which responds to gyroscopic precession forces by tilting up or down; and a governor device for modifying at least one dynamic characteristic of the turbine.
Owner:DRAKE DEVON GLEN

Wind turbine and method for adjusting yaw bias in wind turbine

Wind turbines and method for adjusting yaw bias in wind turbines are provided. In one embodiment, a method includes defining an operational condition for the wind turbine, the operational condition including a turbine speed range, a pitch angle range, and a wind speed range. The method further includes operating the wind turbine within the operational condition, adjusting a yaw angle of the wind turbine during operation of the wind turbine, and measuring power output of the wind turbine during operation within the operational condition.
Owner:GENERAL ELECTRIC CO

Wind Turbine and Method for the Automatic Correction of Wind Vane Settings

The invention relates to a wind turbine comprising a machine housing (12) equipped with a rotor (14), which is mounted to pivot on a sub-structure (10). Wind parameters and an electromechanical quantity are determined by means of measuring devices (21, 22, 23). To enable the machine housing (12) to track the wind, the wind turbine is equipped with a pivoting device (11) comprising a controller (8). The wind turbine is also equipped with a calibration module (2), which is configured to determine an effective mass of the electromechanical quantity using the wind speed. In addition, the turbine comprises an evaluation device (4) comprising a classifier (40), which is used to form a first average value for a first class, for which the wind direction is positive and a second average value for a second class, for which the wind direction is negative. A difference is determined by means of a comparator and a calibration signal is emitted to the controller (8) of the pivoting device (11). The invention permits an autonomous calibration of the controller (8) for the tracking of the machine housing (12) and thus reduces the risk of an erroneous positioning of the rotor (14) in relation to the wind direction, irrespective of the prevailing wind conditions. The invention is particularly stable in relation to variable wind forces and directions, especially in the presence of gusts.
Owner:SENVION GMBH

Apparatus and method for reducing asymmetric rotor loads in wind turbines during shutdown

An apparatus and method for reducing asymmetric rotor load in a wind turbine includes calculating a time delay for pitching each blade toward feather upon initiation of a shutdown condition. The blades with the larger blade angle begin moving toward feather with an initial pitch rate, while the blade with the smallest blade angle begins moving toward feather with a final pitch rate. Once all the blades have reached approximately an identical blade angle, the blades move simultaneously together to feather at the final pitch rate. By introducing the time delay for pitching the blades having higher blade angles at the final pitch rate, a simple, time-based correction of initial conditions during shutdown reduces the extreme loads on turbine components.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products