Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

38results about How to "Reduce recirculation" patented technology

Squitieri hemodialysis and vascular access systems

A hemodialysis and vascular access system comprises a subcutaneous composite PTFE silastic arteriovenous fistula having an indwelling silastic venous end which is inserted percutaneously into a vein and a PTFE arterial end which is anastomosed to an artery. Access to a blood stream within the system is gained by direct puncture of needle(s) into a needle receiving site having a tubular passage within a metal or plastic frame and a silicone upper surface through which needle(s) are inserted. In an alternate embodiment of the invention, percutaneous access to a blood stream may be gained by placing needles directly into the system (i.e. into the PTFE arterial end). The invention also proposes an additional embodiment having an arterialized indwelling venous catheter where blood flows from an artery through a tube and a port into an arterial reservoir and is returned to a vein via a port and a venous outlet tube distinct and distant from the area where the blood from the artery enters the arterial reservoir. The site where blood is returned to the vein is not directly fixed to the venous wall but is free floating within the vein. This system provides a hemodialysis and venous access graft which has superior longevity and performance, is easier to implant and is much more user friendly.
Owner:HEMOSPHERE

Hemodialysis and vascular access system

InactiveUSRE44639E1Encourage self sealing and tissue ingrowthAvoid the needOther blood circulation devicesDiagnosticsVenous accessHaemodialysis machine
A hemodialysis and vascular access system comprises a subcutaneous composite PTFE silastic arteriovenous fistula having an indwelling silastic venous end which is inserted percutaneously into a vein and a PTFE arterial end which is anastomosed to an artery. Access to a blood stream within the system is gained by direct puncture of needle(s) into a needle receiving site having a tubular passage within a metal or plastic frame and a silicone upper surface through which needle(s) are inserted. In an alternate embodiment of the invention, percutaneous access to a blood stream may be gained by placing needles directly into the system (i.e. into the PTFE arterial end). The invention also proposes an additional embodiment having an arterialized indwelling venous catheter where blood flows from an artery through a tube and a port into an arterial reservoir and is returned to a vein via a port and a venous outlet tube distinct and distant from the area where the blood from the artery enters the arterial reservoir. The site where blood is returned to the vein is not directly fixed to the venous wall but is free floating within the vein. This system provides a hemodialysis and venous access graft which has superior longevity and performance, is easier to implant and is much more user friendly.
Owner:MERIT MEDICAL SYST INC

Fluid stream feed device for mass transfer column

A mass transfer column includes a feed device that is used to de-entrain liquid and more uniformly distribute vapor across a horizontal cross section of the column after a vapor or mixed phase stream has been directed into the column through a radially oriented feed nozzle. The feed device includes an annular passageway formed in the spacing between the column shell and an inner wall spaced inwardly from the shell. A deflector with oppositely directed deflecting surfaces is positioned at an inlet from the feed nozzle to the annular passageway and splits the vapor or mixed phase stream into two roughly equal streams that flow in opposite circumferential directions in the annular passageway. At least one pair of turning vanes is spaced on opposite sides of the deflecting surfaces in the annular passageway to create subpassages through which the vapor or mixed phase stream flows. The subpassages reduce the amount of vapor or mixed phase stream flow that impacts against the inner wall of the feed device at the inlet. The turning vanes unexpectedly reduce the pressure drop that occurs as the vapor or mixed phase stream is redirected from its radial entry direction to the circumferential direction in the annular passageway. By reducing the pressure drop, improvements in product yield and vapor distribution can be achieved.
Owner:KOCH GLITSCH INC

Density-matching alkyl push flow for vertical flow rotating disk reactors

In a rotating disk reactor for growing epitaxial layers on substrate or other CVD reactor system, gas directed toward the substrates at gas inlets at different radial distances from the axis of rotation of the disk has both substantially the same gas flow rate / velocity and substantially the same gas density at each inlet. The gas directed toward portions of the disk remote from the axis may include a higher concentration of a reactant gas than the gas directed toward portions of the disk close to the axis, so that portions of the substrate surfaces at different distances from the axis receive substantially the same amount of reactant gas per unit area, and a combination of carrier gases with different relative molecular weights at different radial distances from the axis of rotation are employed to substantially make equal the gas density in each region of the reactor. The system may be applied with a combination or carrier gases at multiple gas inlets, a combination of carrier and reactant gases at multiple inlets, and may be used with an arbitrarily large number of gases, when at least two gases of different molecular weights are provided. A linear flow pattern is achieved within the reactor, avoiding laminar recirculation areas, and permitting uniform deposition and growth of epitaxial layers on the substrate.
Owner:VEECO INSTR

Fluid stream feed device for mass transfer column

A mass transfer column includes a feed device that is used to de-entrain liquid and more uniformly distribute vapor across a horizontal cross section of the column after a vapor or mixed phase stream has been directed into the column through a radially oriented feed nozzle. The feed device includes an annular passageway formed in the spacing between the column shell and an inner wall spaced inwardly from the shell. A deflector with oppositely directed deflecting surfaces is positioned at an inlet from the feed nozzle to the annular passageway and splits the vapor or mixed phase stream into two roughly equal streams that flow in opposite circumferential directions in the annular passageway. At least one pair of turning vanes is spaced on opposite sides of the deflecting surfaces in the annular passageway to create subpassages through which the vapor or mixed phase stream flows. The subpassages reduce the amount of vapor or mixed phase stream flow that impacts against the inner wall of the feed device at the inlet. The turning vanes unexpectedly reduce the pressure drop that occurs as the vapor or mixed phase stream is redirected from its radial entry direction to the circumferential direction in the annular passageway. By reducing the pressure drop, improvements in product yield and vapor distribution can be achieved.
Owner:KOCH GLITSCH INC

Apparatus and method for maintaining high performance plasma

The invention provides a device and a method for maintaining high-performance plasma. The device comprises a central column; a vacuum container, which is arranged around the central column, and the vacuum container is used for containing the formed plasma; a plasma magnetic confinement system, which is used for limiting, forming and controlling the plasma in the vacuum container through a magnetic field, so that the plasma body forms a configuration with a plurality of fluids, wherein the multiple fluids form multiple layers from inside to outside, the fluid located on the outer layer surrounds the fluid located on the inner layer, and the adjacent fluids are at least partially overlapped. In the application, the configuration with a plurality of fluids is formed, wherein the high-energy electron fluid surrounds the thermionic fluid and the thermionic fluid, and the maintenance of the high-energy electron fluid enables the circumferential current to have a very large circumferential current outside the outermost closed magnetic surface, so that plasma turbulence and energy diffusion are effectively avoided; therefore, the recycling phenomenon of particles on the outermost closed magnetic surface is reduced, and the energy constraint capacity and stability of thermionic ions and thermionic electrons in the closed magnetic surface are effectively improved.
Owner:ENN SCI & TECH DEV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products