Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

150results about How to "Reduced radius" patented technology

Electrophysiology/ablation catheter having lariat configuration of variable radius

A remotely deflectable electrophysiology/ablation catheter of the type intended for placing into an interior passage of the heart is disclosed. The distal end of this elongated tubular catheter has a pair of tension/compression members each with a flattened end portion connected to the distal electrode and extending through the catheter casing and attached to a user moveable actuator for effecting the tension/compression thereon for remotely curling the distal end of the catheter. Spaced ring electrodes are provided adjacent the distal electrode. A permanent bend is pre-formed in the casing and tension/compression members adjacent the ring electrodes about an axis perpendicular to the elongated tension/compression members. Movement of the remote actuator causes the distal portion of the catheter to curl into a lariat in a plane perpendicular to the axis along the elongated catheter casing, thus permitting electrical mapping or ablation with the distal and/or ring electrodes about the inner surface of the heart passage into which the lariat is formed and situated. The lariat can achieve a curvature greater than 360 degrees and at a significantly reduced radius to allow insertion of the catheter distal end into passages of reduced dimension.
Owner:ST JUDE MEDICAL ATRIAL FIBRILLATION DIV

Flight management system and method for providing navigational reference to emergency landing locations

An aviation navigational system and method for predicting glide range for an aircraft for specific airports and other potential emergency landing locations in proximity to the aircraft. Information is presented to the pilot by complementing a conventional moving map display with symbols centered on each landing location. GPS altitude, airport elevation, and the aircraft's glide ratio are factored into an equation to determine glide range for each airport within proximity to the aircraft. A circular symbol representing the glide range boundary is displayed around each airport. Each circular symbol represents a sectional view of an imaginary inverted cone, having the apex thereof centered on a given landing location. The size and shape of the cone is based on the gliding performance of the aircraft and the altitude differential between the aircraft and the target landing location. As the altitude differential increases the radius of the circle increases. Conversely as the altitude differential decreases, the radius of the circle decreases. As long as the aircraft is anywhere within any one of the three-dimensional inverted cones displayed, as represented by one or more circles on a two dimensional display, it can safely glide to the landing location. This display concept is selectively referred to herein as “cones of safety.”
Owner:CONTROL VISION CORP

Flight management system and method for providing navigational reference to emergency landing locations

An aviation navigational system and method for predicting glide range for an aircraft for specific airports and other potential emergency landing locations in proximity to the aircraft. Information is presented to the pilot by complementing a conventional moving map display with symbols centered on each landing location. GPS altitude, airport elevation, and the aircraft's glide ratio are factored into an equation to determine glide range for each airport within proximity to the aircraft. A circular symbol representing the glide range boundary is displayed around each airport. Each circular symbol represents a sectional view of an imaginary inverted cone, having the apex thereof centered on a given landing location. The size and shape of the cone is based on the gliding performance of the aircraft and the altitude differential between the aircraft and the target landing location. As the altitude differential increases the radius of the circle increases. Conversely as the altitude differential decreases, the radius of the circle decreases. As long as the aircraft is anywhere within any one of the three-dimensional inverted cones displayed, as represented by one or more circles on a two dimensional display, it can safely glide to the landing location. This display concept is selectively referred to herein as “cones of safety.”
Owner:CONTROL VISION CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products