Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

113 results about "In vivo measurements" patented technology

What is In Vivo Measurement. 1. Measurements are performed on the body of living subject (human or animal) without taking the sample out of the living subject.

Optical sampling interface system for in-vivo measurement of tissue

InactiveUS7606608B2Minimizes stateMinimizes variationDiagnostic recording/measuringSensorsCouplingTissue sample
An optical sampling interface system is disclosed that minimizes and compensates for errors that result from sampling variations and measurement site state fluctuations. Embodiments of the invention use a guide that does at least one of, induce the formation of a tissue meniscus, minimize interference due to surface irregularities, control variation in the volume of tissue sampled, use a two-part guide system, use a guide that controls rotation of a sample probe and allows z-axis movement of the probe, use a separate base module and sample module in conjunction with a guide, and use a guide that controls rotation. Optional components include an occlusive element and a coupling fluid.
Owner:GLT ACQUISITION

System and method of measuring disease severity of a patient before, during and after treatment

A system and method of obtaining serial biochemical, anatomical or physiological in vivo measurements of disease from one or more medical images of a patient before, during and after treatment, and measuring extent and severity of the disease is provided. First anatomical and functional image data sets are acquired, and form a first co-registered composite image data set. At least a volume of interest (ROI) within the first co-registered composite image data set is identified. The first co-registered composite image data set including the ROI is qualitatively and quantitatively analyzed to determine extent and severity of the disease. Second anatomical and functional image data sets are acquired, and form a second co-registered composite image data set. A global, rigid registration is performed on the first and second anatomical image data sets, such that the first and second functional image data sets are also globally registered. At least a ROI within the globally registered image data set using the identified ROI within the first co-registered composite image data set is identified. A local, non-rigid registration is performed on the ROI within the first co-registered composite image data set and the ROI within the globally registered image data set, thereby producing a first co-registered serial image data set. The first co-registered serial image data set including the ROIs is qualitatively and quantitatively analyzed to determine severity of the disease and / or response to treatment of the patient.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Optical sensor containing particles for in situ measurement of analytes

The invention relates to a sensor for the in vivo measurement of an analyte, comprising a plurality of particles of suitable size such that when implanted in the body of a mammal the particles can be ingested by macrophages and transported away from the site of implantation, each particle containing the components of an assay having a readout which is an optical signal detectable transdermally by external optical means, and either each particles being contained within a biodegradable material preventing ingestion by the macrophages, or each particle being non-biodegradable. The invention relates to a process for the detection of an analyte using such a sensor, comprising implantation of the sensor into the skin of a mammal, transdermal detection of analyte using external optical means, degradation of the biodegradable material, ingestion of the particles by macrophages, and removal of the particles from the site of implantation by macrophages.
Owner:MEDTRONIC MIMIMED INC

System and Method for In Vivo Measurement of Biological Parameters

A system, method and medical tool are presented for use in non-invasive in vivo determination of at least one desired parameter or condition of a subject having a scattering medium in a target region. The measurement system comprises an illuminating system, a detection system, and a control system. The illumination system comprises at least one light source configured for generating partially or entirely coherent light to be applied to the target region to cause a light response signal from the illuminated region. The detection system comprises at least one light detection unit configured for detecting time-dependent fluctuations of the intensity of the light response and generating data indicative of a dynamic light scattering (DLS) measurement. The control system is configured and operable to receive and analyze the data indicative of the DLS measurement to determine the at least one desired parameter or condition, and generate output data indicative thereof.
Owner:ELFI TECH

Non-invasive measurement of analytes

This invention provides devices, compositions and methods for determining the concentration of one or more metabolites or analytes in a biological sample, including cells, tissues, organs, organisms, and biological fluids. In particular, this invention provides materials, apparatuses, and methods for several non-invasive techniques for the determination of in vivo blood glucose concentration levels based upon the in vivo measurement of one or more biologically active molecules found in skin.
Owner:CERCACOR LAB INC

Fiber-optic sensing system

The invention provides a fiber-optic sensing system, utilizing a fiber-grating-based sensor, for a physical parameter, e.g., a pressure or a temperature. Different kinds of fiber-grating-based sensors may be used for this purpose but in-fiber gratings such as Fiber Bragg Grating, Long Period Grating and Surface Corrugated Long Period Fiber Grating are particularly suitable. Due to the small size of the optical fiber and the fact that same fiber acts as the sensing element as well as the signal conducting medium, it is possible to install the sensor in a small diameter needle which is commonly used for medical diagnosis and treatment. As a result, when the fiber-optic sensing system of the invention is used for in-vivo measurement of a biological parameter, such a sensing needle can be used for different in-vivo pressure or temperature sensing applications without causing too much harm and discomfort to the subject tested.
Owner:YIP KIN MAN +1

Four-dimensional imaging of periodically moving objects via post-acquisition synchronization of nongated slice-sequences

InactiveUS20050259864A1Fast executionMicroscopic object acquisitionLeast squares minimizationOrganism
When the studied motion is periodic, such as for a beating heart, it is possible to acquire successive sets of two dimensional plus time data slice-sequences at increasing depths over at least one time period which are later rearranged to recover a three dimensional time sequence. Since gating signals are either unavailable or cumbersome to acquire in microscopic organisms, the invention is a method for reconstructing volumes based solely on the information contained in the image sequences. The central part of the algorithm is a least-squares minimization of an objective criterion that depends on the similarity between the data from neighboring depths. Owing to a wavelet-based multiresolution approach, the method is robust to common confocal microscopy artifacts. The method is validated on both simulated data and in-vivo measurements
Owner:CALIFORNIA INST OF TECH

System and method of measuring disease severity of a patient before, during and after treatment

A system for obtaining serial biochemical, anatomical or physiological in vivo measurements of disease from one or more medical images of a patient before, during and after treatment, and measuring extent and severity of the disease is provided. First anatomical and functional image data sets are acquired, and form a first co-registered composite image data set. At least a volume of interest (VOI) within the first co-registered composite image data set is identified. The first co-registered composite image data set including the VOI is qualitatively and quantitatively analyzed to determine extent and severity of the disease. Second anatomical and functional image data sets are acquired, and form a second co-registered composite image data set. A global, rigid registration is performed on the first and second anatomical image data sets, such that the first and second functional image data sets are also globally registered.
Owner:SIEMENS MEDICAL SOLUTIONS USA INC

Method and apparatus for measuring cancerous changes from reflectance spectral measurements obtained during endoscopic imaging

The present invention provides a new method and device for disease detection, more particularly cancer detection, from the analysis of diffuse reflectance spectra measured in vivo during endoscopic imaging. The measured diffuse reflectance spectra are analyzed using a specially developed light-transport model and numerical method to derive quantitative parameters related to tissue physiology and morphology. The method also corrects the effects of the specular reflection and the varying distance between endoscope tip and tissue surface on the clinical reflectance measurements. The model allows us to obtain the absorption coefficient (μa) and further to derive the tissue micro-vascular blood volume fraction and the tissue blood oxygen saturation parameters. It also allows us to obtain the scattering coefficients (μs and g) and further to derive the tissue micro-particles volume fraction and size distribution parameters.
Owner:PERCEPTRONIX MEDICAL +1

Measuring a gradient in-vivo

A device, system and method for in-vivo sensing (e.g., pH sensing, pressure sensing, or other sensing) may include more than one sensor receiving in-vivo data. The sensed data may be analyzed to, for example, determine a gradient or fluid flow. A device including multiple sensors may be held or immobilized in-vivo, and may detect a fluid flow or gradient moving past the sensors.
Owner:GIVEN IMAGING LTD

Method and system for measuring lactate levels in vivo

There is described a system and method for the in vivo determination of lactate levels in blood using Near-Infrared Spectroscopy (NIRS) and / or Near-infrared Raman Spectroscopy (NIR-RAMAN). The method teaches measuring lactate in vivo comprising: optically coupling a body part with a light source and a light detector the body part having tissues comprising blood vessels; injecting near-infrared (NIR) light at one or a plurality of wavelengths in the body part; detecting, as a function of blood volume variations in the body part, light exiting the body part at at least the plurality of wavelengths to generate an optical signal; and processing the optical signal as a function of the blood volume variations to obtain a lactate level in blood.
Owner:MCGILL UNIV

IN Vivo raman endoscopic probe

An apparatus for in vivo, endoscopic laser Raman spectroscopy probe and methods for its use are described. The probe comprises a fiber bundle assemble small enough to fit through an endoscope instrument channel, a novel combination of special coatings to the fiber bundle assembly, including a short-pass filter on the illumination fiber and a long-pass filter on the collection fiber bundle, a novel filter adapter comprising collimating lenses, focusing lenses, a band-pass filter, and a notch filter, and a round-to-parabolic linear array fiber bundle. The apparatus further comprises a laser to deliver illumination light and a spectrometer to analyze Raman-scattered light from a sample. The analysis of Raman spectra from in vivo measurements can discover molecular and structural changes associated with neoplastic transformations and lead to early diagnosis and treatment of cancer.
Owner:BRITISH COLUMBIA CANCER AGENCY BRANCH

In vivo measurement of the relative fluxes through ribonucleotide reductase vs. deoxyribonucleoside pathways using isotopes

InactiveUS20050255509A1Increase salvageHigh activityCompound screeningApoptosis detectionRate-determining stepDeoxyribonucleotide biosynthesis
The methods of the present invention allow for the measurement of ribonucleotide reductase (RR) activity, an important enzyme in the de novo DNA synthesis pathway. Ribonucleotide reductase converts all four ribonucleotides to their deoxy form and is a rate-controlling step in this pathway. Biosynthetic pathways of deoxyribonucleotides (dN) have received considerable attention in the context of anti-proliferative chemotherapy. Inhibitors of various steps in dN biosynthesis, including inhibitors of RR are among the most useful chemotherapeutic agents in cancer, viral infections, and other therapeutic uses. DNA synthesis from the dN salvage pathway is also an important component to DNA replication. The relative contributions from RR vs. salvage pathways are critical to the actions and effectiveness of chemotherapeutic agents that act on nucleoside metabolic pathways. Until now, however, it has not been possible to study these metabolic processes in vivo. Disclosed within are methods of measuring RR activity in vivo and in vitro which find use, among other things, in drug discovery, development, and approval.
Owner:KINEMED

Optical sampling interface system for in vivo measurement of tissue

An optical sampling interface system minimizes and compensates error resulting from sampling variations and measurement site state fluctuations. Components include: An optical probe placement guide having an aperture wherein the optical probe is received, facilitates repeatable placement accuracy on surface of a tissue measurement site with minimal, repeatable disturbance to surface tissue. The aperture creates a tissue meniscus that minimizes interference due to surface irregularities and controls variation in tissue volume sampled; an occlusive element placed over the tissue meniscus isolates the meniscus from environmental fluctuations, stabilizing hydration at the site and thus, surface tension; an optical coupling medium eliminates air gaps between skin surface and optical probe; a bias correction element applies a bias correction to spectral measurements, and associated analyte measurements. When the guide is replaced, a new bias correction is determined for measurements done with the new placement. Separate components of system can be individually deployed.
Owner:GLT ACQUISITION

Method for in-vivo measurement of biomechanical properties of internal tissues

A method for determining material properties of internal tissues of a body, the method comprising the steps of: a. providing force measuring device, b. providing an imaging means for acquiring images of deformation or displacement of tissues inside a body cavity; c. providing a calculation means for quantifying displacement of internal tissues; d. inserting at least a portion of said probe head into the body cavity; e. applying force with said probe head against an internal body tissue; f. measuring said force applied to said internal body tissue; g. acquiring images of displacement of said internal body tissue; h. calculating said displacement of said internal body tissue; and i. calculating material properties from said measured force and said calculated displacement.
Owner:THE PROCTER & GAMBLE COMPANY

In-vivo measurement of biomechanical properties of internal tissues

A device and method for determining location dependent biomechanical properties of internal tissues is disclosed. The device comprises an expandable probe which is insertable into an orifice of a body and into a body; a flexible conduit to conduct fluid between a fluid supply and said expandable probe; means for conducting fluid between said fluid supply and said expandable probe, said means capable of changing the volume of said expandable probe; a pressure transducer for measuring fluid pressure of said expandable probe; imaging means for detecting strain of internal tissues contacted by said expandable probe; and calculating means for determining biomechanical properties of said internal tissues.
Owner:THE PROCTER & GAMBLE COMPANY

System and method for in vivo measurement of biological parameters

A system, method and medical tool are presented for use in non-invasive in vivo determination of at least one desired parameter or condition of a subject having a scattering medium in a target region. The measurement system comprises an illuminating system, a detection system, and a control system. The illumination system comprises at least one light source configured for generating partially or entirely coherent light to be applied to the target region to cause a light response signal from the illuminated region. The detection system comprises at least one light detection unit configured for detecting time-dependent fluctuations of the intensity of the light response and generating data indicative of a dynamic light scattering (DLS) measurement. The control system is configured and operable to receive and analyze the data indicative of the DLS measurement to determine the at least one desired parameter or condition, and generate output data indicative thereof.
Owner:ELFI TECH

Fiber-optic sensing system

The invention provides a fiber-optic sensing system, utilizing a fiber-grating-based sensor, for a physical parameter, e.g., a pressure or a temperature. Different kinds of fiber-grating-based sensors may be used for this purpose but in-fiber gratings such as Fiber Bragg Grating, Long Period Grating and Surface Corrugated Long Period Fiber Grating are particularly suitable. Due to the small size of the optical fiber and the fact that same fiber acts as the sensing element as well as the signal conducting medium, it is possible to install the sensor in a small diameter needle which is commonly used for medical diagnosis and treatment. As a result, when the fiber-optic sensing system of the invention is used for in-vivo measurement of a biological parameter, such a sensing needle can be used for different in-vivo pressure or temperature sensing applications without causing too much harm and discomfort to the subject tested.
Owner:YIP KIN MAN +1

System for in-vivo measurement of an analyte concentration

The analyte concentration, such as glucose, in a human or animal body is measured with an implantable sensor that generates measurement signals. The measurement signals are compressed through statistical techniques to produced compressed measurement data that can is easier to process and communicate. A base station carries the implantable sensor along with a signal processor, memory, and a transmitter. A display device is also disclosed that can receive the compressed measurement data from the base station for further processing and display.
Owner:ROCHE DIABETES CARE INC

System and method for in vivo measurement of biological parameters

A system, method and medical tool are presented for use in non-invasive in vivo determination of at least one desired parameter or condition of a subject having a scattering medium in a target region. The measurement system comprises an illuminating system, a detection system, and a control system. The illumination system comprises at least one light source configured for generating partially or entirely coherent light to be applied to the target region to cause a light response signal from the illuminated region. The detection system comprises at least one light detection unit configured for detecting time-dependent fluctuations of the intensity of the light response and generating data indicative of a dynamic light scattering (DLS) measurement. The control system is configured and operable to receive and analyze the data indicative of the DLS measurement to determine the at least one desired parameter or condition, and generate output data indicative thereof.
Owner:ELFI TECH

Device and system for in-vivo measurement of biomechanical properties of internal tissues

A force measurement device and system, the device being for insertion into an internal body cavity of a human. The probe comprises (a) a probe head having a dimension suitable for insertion into the body cavity; (b) a load cell operatively connected to the probe head such that forces on the probe head are transmitted to the load cell; and (c) a relatively rigid portion joined to the probe head by a relatively flexible portion such that the probe head is flexibly joined to the relatively rigid portion and can move laterally with respect to a longitudinal center line of the relatively rigid portion.
Owner:THE PROCTER & GAMBLE COMPANY

Joint-diagnostic in vivo & in vitro apparatus

In vivo testing for analytes in a life-form is an attractive concept because a biological sample does not have to be removed from the life-form. However, in vivo testing alone is unable to provide information that is accurate, complete and / or reliable enough to safely replace in vitro testing. In contrast to performing either in vivo or in vitro testing independently and alone, some embodiments of the present invention provide a joint-diagnostic apparatus for combined in vivo and in vitro testing. In some specific embodiments results from an in vitro measurement module are used in combination with subsequent in vivo measurements / observations obtained at a later time, and / or vice versa. Accordingly, in some embodiments in vitro measurements are used to compliment and / or partially compensate for some of the limitations of in vivo testing, and at the same time enabling some of the benefits of in vivo testing by reducing the number of biological samples taken.
Owner:TYCO HEALTHCARE GRP LP

Four-dimensional imaging of periodically moving objects via post-acquisition synchronization of nongated slice-sequences

InactiveUS7372984B2Fast executionMicroscopic object acquisitionLeast squares minimizationOrganism
When the studied motion is periodic, such as for a beating heart, it is possible to acquire successive sets of two dimensional plus time data slice-sequences at increasing depths over at least one time period which are later rearranged to recover a three dimensional time sequence. Since gating signals are either unavailable or cumbersome to acquire in microscopic organisms, the invention is a method for reconstructing volumes based solely on the information contained in the image sequences. The central part of the algorithm is a least-squares minimization of an objective criterion that depends on the similarity between the data from neighboring depths. Owing to a wavelet-based multiresolution approach, the method is robust to common confocal microscopy artifacts. The method is validated on both simulated data and in-vivo measurements.
Owner:CALIFORNIA INST OF TECH

Implantable oximetric measurement apparatus and method of use

Embodiments provide an apparatus, system, kit and method for in vivo measurement of blood oxygen saturation (BAS). One embodiment provides an implantable apparatus for measuring BAS comprising a housing, emitter, detector, processor and power source. The housing is configured to be injected through a tissue penetrating device into a target tissue site (TS). The emitter is configured to emit light into the TS to measure BAS, the emitted light having at least one wavelength (LOW) whose absorbance is related to a BAS. The detector is configured to receive light reflected from the TS, detect light at the LOW and generate a detector output signal (DOS) responsive to an intensity of the detected light. The processor is operably coupled to the detector and emitter to send signals to the emitter to emit light and receive the DOS and includes logic for calculating a BAS and generate a signal encoding the BAS.
Owner:INCUBE LABS

Non-invasive determination of the concentration of a blood substance

In order to provide a non-invasive and continuous concentration measurement with the technology of standard pulse oximeters, an a priori relationship is created, through an in-vivo tissue model including a nominal estimate of a tissue parameter indicative of the concentration of a blood substance. The a priori relationship is indicative of the effect of tissue on in-vivo measurement signals at a plurality of wavelengths, the in-vivo measurement signals being indicative of absorption caused by pulsed arterial blood. In-vivo measurement signals are acquired from in-vivo tissue at the plurality of wavelengths and a specific value of the tissue parameter is determined based on the a priori relationship, the specific value being such that it yields the effect of the in-vivo tissue on the in-vivo measurement signals consistent for the plurality of wavelengths. The specific value then represents the concentration of the substance in the blood.
Owner:GENERAL ELECTRIC CO

Noninvasive in vivo measuring system and noninvasive in vivo measuring method by correcting influence of Hemoglobin

A noninvasive in vivo measuring system and a noninvasive in vivo measuring method are provided. In the noninvasive in vivo measuring system, a Raman-fluorescence measuring unit measures blood sugar concentration, which is measured using Raman spectra before and after applying a pressure on a finger, and outputs a final blood sugar level by correcting the blood sugar concentration measurement according to a Hemoglobin (Hb) concentration measured by an Hb measuring unit.
Owner:SAMSUNG ELECTRONICS CO LTD

Method for assessing the probability of disease development in tissue

A method for detecting conditions in tissues that can lead to disease includes an in vivo measurement of the mechanical characteristics of the tissues using Magnetic Resonance Elastography (MRE). The deviation of mechanical characteristics such as tissue stiffness from a predetermined norm is determined and indicated on an image of the tissues.
Owner:MAYO FOUND FOR MEDICAL EDUCATION & RES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products