Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

145 results about "Insulin receptor" patented technology

The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of tyrosine kinase receptors. Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis, a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer. Insulin signalling controls access to blood glucose in body cells. When insulin falls, especially in those with high insulin sensitivity, body cells begin only to have access to lipids that do not require transport across the membrane. So, in this way, insulin is the key regulator of fat metabolism as well. Biochemically, the insulin receptor is encoded by a single gene INSR, from which alternate splicing during transcription results in either IR-A or IR-B isoforms. Downstream post-translational events of either isoform result in the formation of a proteolytically cleaved α and β subunit, which upon combination are ultimately capable of homo or hetero-dimerisation to produce the ≈320 kDa disulfide-linked transmembrane insulin receptor.

Inhibition of alpha-2 hs glycoprotein (AHSG/fetuin) in obesity and insulin control of glucose homeostasis

InactiveUS20080050372A1Reduce the amount requiredIncreased basalPeptide/protein ingredientsMetabolism disorderAlpha-2-HS-glycoproteinAnti-CEA Antibody
α2-Heremans Schmid Glycoprotein (AHSG) inhibits insulin-induced autophosphorylation of the insulin receptor (IR) and IR-tyroskine kinase (TK) activity; genetic ablation of the Ahsg gene enhances insulin signal transduction and increase whole-body insulin sensitivity. Therefor, AHSG and its gene(s) are useful targets for agents that inhibit the development or progression of Type II diabetes or any disease or disorder associated with increased insulin resistance. Provided herein is a method for inhibiting the biological activity of AHSG protein in a cell using compounds that inhibit phosphorylation of AHSG. Also disclosed is a method of augmenting the phosphorylation or IR-TK activity in a liver or muscle cell by providing a compound that lowers the amount of active AHSG or inhibits the biological activity of AHSG. Such effects may be achieved by delivering an antisense nucleic acid construct that hybridizes with AHSG encoding DNA. This invention includes a method (a) treating a subject that is susceptible to, or suffers from, obesity and insulin resistance or (b) increasing insulin sensitivity, and thereby preventing or treating insulin resistance in the subject. The method comprises lowering the amount of active AHSG or inhibiting the biological activity of AHSG in the subject, preferably in liver or muscle, by using AHSG antisense constructs or an anti-AHSG antibody. In a subject eating a high fat diet, the effect on body weight gain and/or insulin resistance is diminished, and total body fat content is lowered, by lowering the amount of active AHSG or inhibiting the action of the AHSG in the subject using the agents noted above.
Owner:WAYNE STATE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products