Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

56 results about "Optical ring resonators" patented technology

An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. (These can be, but are not limited to being, waveguides.) The concepts behind optical ring resonators are the same as those behind whispering galleries except that they use light and obey the properties behind constructive interference and total internal reflection. When light of the resonant wavelength is passed through the loop from input waveguide, it builds up in intensity over multiple round-trips due to constructive interference and is output to the output bus waveguide which serves as a detector waveguide. Because only a select few wavelengths will be at resonance within the loop, the optical ring resonator functions as a filter. Additionally, as implied earlier, two or more ring waveguides can be coupled to each other to form an add/drop optical filter .

Method and apparatus for measuring and monitoring optical properties based on a ring-resonator

A method and apparatus for performing refractive index, birefringence and optical activity measurements of a material such as a solid, liquid, gas or thin film is disclosed. The method and apparatus can also be used to measure the properties of a reflecting surface. The disclosed apparatus has an optical ring-resonator in the form of a fiber-loop resonator, or a race-track resonator, or any waveguide-ring or other structure with a closed optical path that constitutes a cavity. A sample is introduced into the optical path of the resonator such that the light in the resonator is transmitted through the sample and relative and/or absolute shifts of the resonance frequencies or changes of the characteristics of the transmission spectrum are observed. A change in the transfer characteristics of the resonant ring, such as a shift of the resonance frequency, is related to a sample's refractive index (refractive indices) and/or change thereof. In the case of birefringence measurements, rings that have modes with two (quasi)-orthogonal (linear or circular) polarization states are used to observe the relative shifts of the resonance frequencies. A reflecting surface may be introduced in a ring resonator. The reflecting surface can be raster-scanned for the purpose of height-profiling surface features. A surface plasmon resonance may be excited and phase changes of resonant light due to binding of analytes to the reflecting surface can be determined in the frequency domain.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Wavelength switchable semiconductor laser using half-wave coupled active double-ring resonator

A semiconductor laser comprises two optical ring resonators, each comprising an optical waveguide electrically pumped to provide optical gain. The two ring resonators have different round-trip optical path lengths, and are coupled to each other through a half-wave optical coupler. The half-wave optical coupler has a predetermined cross-coupling coefficient and a 180-degree cross-coupling phase. The cross-coupling coefficient is substantially less than the self-coupling coefficients in order to achieve an optimal single-mode selectivity of the laser. The first ring resonator has an optical path length such that its resonant wavelengths correspond to a set of discrete operating channels. The second ring resonator has a slightly different length so that only one resonant wavelength coincides with one of the resonant wavelengths of the first ring resonator over the operating spectral window. The lasing action occurs at the common resonant wavelength. In operation, at least a portion of the optical waveguide in each of the first and the second ring resonators are forward biased to provide substantially equal round-trip optical gains. The second ring resonator is tuned by varying the effective refractive index of a portion of the waveguide through an electrical means, resulting in wavelength switching among the set of discrete operating wavelengths as determined by the first ring resonator.
Owner:ZHEJIANG UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products