Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1229 results about "Surface plasmon resonance" patented technology

Surface plasmon resonance (SPR) is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material stimulated by incident light. SPR is the basis of many standard tools for measuring adsorption of material onto planar metal (typically gold or silver) surfaces or onto the surface of metal nanoparticles. It is the fundamental principle behind many color-based biosensor applications, different lab-on-a-chip sensors and diatom photosynthesis.

Method and apparatus for measuring and monitoring optical properties based on a ring-resonator

A method and apparatus for performing refractive index, birefringence and optical activity measurements of a material such as a solid, liquid, gas or thin film is disclosed. The method and apparatus can also be used to measure the properties of a reflecting surface. The disclosed apparatus has an optical ring-resonator in the form of a fiber-loop resonator, or a race-track resonator, or any waveguide-ring or other structure with a closed optical path that constitutes a cavity. A sample is introduced into the optical path of the resonator such that the light in the resonator is transmitted through the sample and relative and/or absolute shifts of the resonance frequencies or changes of the characteristics of the transmission spectrum are observed. A change in the transfer characteristics of the resonant ring, such as a shift of the resonance frequency, is related to a sample's refractive index (refractive indices) and/or change thereof. In the case of birefringence measurements, rings that have modes with two (quasi)-orthogonal (linear or circular) polarization states are used to observe the relative shifts of the resonance frequencies. A reflecting surface may be introduced in a ring resonator. The reflecting surface can be raster-scanned for the purpose of height-profiling surface features. A surface plasmon resonance may be excited and phase changes of resonant light due to binding of analytes to the reflecting surface can be determined in the frequency domain.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products