Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

702 results about "Surface plasmonic resonance" patented technology

Semiconductor nanocrystal quantum dots and metallic nanocrystals as UV blockers and colorants for suncreens and/or sunless tanning compositions

The present invention is directed to photostable sunscreen and/or artificial tanning compositions including quantum dot nanocrystals of a material selected from semiconductor nanocrystals, modified semiconductor nanocrystals, multicomponent semiconductor/semiconductor nanocrystals, and hybrid semiconductor/metal nanocrystals, the quantum dot nanocrystals having an absorption band gap occurring at wavelengths higher than 400 nm whereby the quantum dot nanocrystals have substantial broadband absorption properties of ultraviolet light at wavelengths across the range of both UV-A (320-400 nm) and UV-B (280-320 nm), and a dermatologically acceptable carrier for the quantum dot nanocrystals. The present invention is further directed to photostable sunscreen and/or artificial tanning compositions including a material selected from metallic nanocrystals, multicomponent metal/metal nanocrystals, and alloyed metal nanocrystals, the metallic material having a surface plasmon resonance occurring sufficiently into the visible or infrared spectral region whereby broad absorption features due to electronic transitions, the broad absorption features located at higher energies, provide substantial broadband absorption properties of ultraviolet light at wavelengths across the range of both UV-A (320-400 nm) and UV-B (280-320 nm), and a dermatologically acceptable carrier for the metallic material.
Owner:LOS ALAMOS NATIONAL SECURITY

Sensor for nano gold particles and preparation method thereof

The invention provides a sensor for nano gold particles and a preparation method thereof. The end surface of a multi-core optical fiber is of a conical-platform structure; a total-reflection film is plated on the surface of the conical platform; the nano gold particles which are distributed regularly are fixed on the end surface of the optical fiber plated with the total-reflection film; exciting light is injected into one fiber core of the multi-core optical fiber, is reflected to the end surface of the optical fiber at the film-plated position of the conical platform and generates total internal reflection on the end surface of the optical fiber, and a generated evanescent field excites a localized surface plasmon resonance effect of the nano gold particles; the reflected light is collected by the fiber core symmetrical to the fiber core injected with the exciting light, and the change of the physical quantity of external substances is sensed by the spectrum of the reflecting light. The sensor and the preparation method have the advantages that the multi-core optical fiber, a self-assembly technology of a near-field optical tweezer and the localized surface plasmon resonance effect of the nano gold particles are combined, and the near-field optical tweezer of the multi-core optical fiber can be utilized for capturing the nano gold particles, so that the optical self-assembly and regular distribution is carried out on the nano gold particles according to the distribution rule of the capturing areas; the structure is simple, the volume is smaller and the repeatability is high.
Owner:HARBIN ENG UNIV

P-type graphene/N-type germanium nanocone array schottky junction infrared photoelectric detector and preparation method thereof

The invention discloses a P-type graphene/N-type germanium nanocone array schottky junction infrared photoelectric detector and a preparation method thereof. The preparation method is characterized by comprising the following steps of forming an insulating layer on the front face of an N-type germanium basal layer in an evaporation manner by taking the N-type germanium basal layer as a base region of the photoelectric detector; arranging an N-type germanium nanocone array on the upper surface of the N-type germanium basal layer; transferring P-type graphene to the N-type germanium nanocone array covered with the insulating layer; coating the P-type graphene with indium tin oxide (ITO) nano-particles in a spin manner to realize a P-type graphene/N-type germanium nanocone array schottky junction-based photodiode. According to the infrared photoelectric detector disclosed by the invention, by utilizing the structure of the germanium nanocone array and the characteristic of the surface plasma resonance of the ITO nano-particles, the ability of absorbing light is enhanced, and the ability of responding to light is improved; the preparation method disclosed by the invention is simple, is suitable for mass production, and can be used for preparing the infrared photoelectric detector which has high light absorption ability and is high in photoelectric conversion efficiency, and a foundation is laid for applying the germanium nanocone array structure to the photoelectric detector.
Owner:HEFEI UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products