Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

157 results about "Site selective" patented technology

Display system and method

A display system is disclosed as including first and second visual display units (VDU's), each for displaying visual images for viewing; a first digital video camera for capturing images of a first individual viewing images displayed by the first VDU; at least second and third digital video cameras for capturing, each from a different angle, images of a second individual viewing the second VDU; in which the first digital video camera is connectable with the second VDU for transmitting the captured images to the second VDU for display; and the first VDU is connectable with either of the second and third digital video cameras for display of images captured by either of the second and third digital video cameras; means for identifying the position of the centre point between the eyes of the captured images of the first individual against a capture window of the first digital video camera; and means for selectively connecting the first VDU with the second digital video camera or the third digital video camera in accordance with the identified position of the centre point between the eyes of the first individual. A visual display apparatus is also disclosed as including a visual display unit supported by a table, the table including a closable opening; a reflector movable relative to the table between a first position in which the reflector closes the opening and a second position in which the opening is open and images displayed by the visual display unit are reflectable by the reflector for viewing; and an end of the reflector is slidably and swivellably movable relative to the table for movement between the first and second positions.
Owner:YUEN LAU CHAN

Carbon nanotubes derivatized with diazonium species

The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
Owner:RICE UNIV

Automated conveying system

An automated control system is described for a conveying system including an input conveyor supplying a product, a segmented output conveyor delivering a product in a pattern, and one or more synchronizing conveyors disposed between the input conveyor and the output conveyor. The control system comprises a plurality of product position sensors for sensing position of product on each synchronizing conveyor. A conveyor sensor senses segment position of the output conveyor. A plurality of drives, one for each respective conveyor, control the respective conveyors. A database stores a plurality of template pattern algorithms each defining a control algorithm for a distinct product pattern to be delivered from the segmented output conveyor. A controller is operatively connected to the product position sensors, the conveyor sensor and the drives for controlling the conveyors responsive to sensed product position and segment position. The controller includes a programmable processor operable to download a select one of the template pattern algorithms. The controller selectively advances or retards product position relative to the segment position of the output conveyor to release the products onto the output conveyor according to the distinct product pattern defined by the downloaded template pattern algorithm.
Owner:YASKAWA ELECTRIC AMERICA

Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and-sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
Owner:RICE UNIV

Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
Owner:RICE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products