Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

92 results about "Sodium-potassium alloy" patented technology

Sodium-potassium alloy, colloquially called NaK (commonly pronounced /næk/), is an alloy of two alkali metals, sodium (Na, atomic number 11) and potassium (K, atomic number 19), and which is usually liquid at room temperature. Various commercial grades are available. NaK is highly reactive with water (like its constituent elements) and may catch fire when exposed to air, so must be handled with special precautions.

Router-assisted multicast congestion control

InactiveUS7035217B1Convenient and expandable methodError preventionTransmission systemsLoss rateDistribution tree
The invention provides a convenient and expandable method for transmitting one or more loss rate statistics determined in a distributed manner from a multicast distribution tree to a source computer. First, the loss rate statistics are collected in a distributed manner from target receiver stations, and from routers in the multicast distribution tree. Second, there is a distributed calculation of statistics on loss rate by routers in the multicast distribution tree. Third, there is transportation of the loss rate statistics back to the source computer in reverse along the multicast distribution tree. For example, congestion information is collected by routers, and the congestion information is sent upstream to the multicast source station in fields of NAK messages. A router may receive a NAK packet in transit from an intended destination station to a source station, the NAK packet indicating loss of a data packet. The router writes a loss rate statistic determined by the router into a “loss rate field” of a message to be sent upstream along the reverse of the distribution tree. The router determines the loss rate statistic to be written into the loss rate field of the message, in response to: analyzing the loss rate statistics on each of its links; the loss rate reported by the incoming NAK packet; and, the elapsed time from the time stamp showing when the various loss rate statistics were determined.
Owner:CISCO TECH INC

System and method for remote controlling and monitoring electric home appliances

A system and a method for remote controlling and monitoring electric home appliance are disclosed. The system includes a first electric home appliance having a master function, a second electric home appliance having a slave function, and a communication line path for communicating between the first and second electric home appliances. The method includes a first s in which the first electric home appliance leads information of the second electric home appliance, sets a corresponding communication speed and a corresponding packet length, and transmits a use command to the second electric home appliance at the preset speed by the preset packet length constituted as one packet; a second step in which the second electric home appliance corresponding to the first packet receives the first packet, checks an error, performs a command of the first packet if an error is not found and a command of the second packet of NAK if an error is found, and constitutes the second packet of ACK if the command is performed, thereby transmitting to the first electric home appliance; and a third step in which the first electric home appliance checks whether the second packet is received or not and then transmits a next packet or retransmits the first packet according to the result.
Owner:LG ELECTRONICS INC

Silica gel compositions containing alkali metals and alkali metal alloy

The invention relates to Group 1 metal/silica gel compositions comprising silica gel and an alkali metal or an alkali metal alloy. The compositions of the inventions are described as Stage 0, I, II, and III materials. These materials differ in their preparation and chemical reactivity. Each successive stage may be prepared directly using the methods described below or from an earlier stage material. Stage 0 materials may, for example, be prepared using liquid alloys of Na and K which are rapidly absorbed by silica gel (porous SiO2) under isothermal conditions, preferably at or just above room temperature, to form loose black powders that retain much of the reducing ability of the parent metals. When the low melting Group 1 metals are absorbed into the silica gel, a mild exothermic reaction produces Stage I material, loose black powders that are indefinitely stable in dry air. Subsequent heating to 400° C. produces Stage II materials, which are also loose black powders. Further heating above 400° C. forms Stage III material with release of some Group 1 metal. It is believed that Stage I, II and III materials represent reductions of the silica gel after absorption of the Group 1 metal. Preferred Group 1 metal/silica gel compositions of the invention are those containing sodium, potassium, or sodium-potassium alloys with sodium and sodium-potassium alloys being most preferred. Each stage of the Group 1 metal/silica gel composition of the invention may be used as a reducing agent reacting with a number of reducible organic materials in the same manner known for alkali metals and their alloys.
Owner:SIGNA CHEM INC +1

Silica gel compositions containing alkali metals and alkali metal alloys

The invention relates to Group 1 metal / silica gel compositions comprising silica gel and an alkali metal or an alkali metal alloy. The compositions of the inventions are described as Stage 0, I, II, and III materials. These materials differ in their preparation and chemical reactivity. Each successive stage may be prepared directly using the methods described below or from an earlier stage material. Stage 0 materials may, for example, be prepared using liquid alloys of Na and K which are rapidly absorbed by silica gel (porous SiO2) under isothermal conditions, preferably at or just above room temperature, to form loose black powders that retain much of the reducing ability of the parent metals. When the low melting Group 1 metals are absorbed into the silica gel, a mild exothermic reaction produces Stage I material, loose black powders that are indefinitely stable in dry air. Subsequent heating to 400° C. produces Stage II materials, which are also loose black powders. Further heating above 400° C. forms Stage III material with release of some Group 1 metal. It is believed that Stage I, II and III materials represent reductions of the silica gel after absorption of the Group 1 metal. Preferred Group 1 metal / silica gel compositions of the invention are those containing sodium, potassium, or sodium-potassium alloys with sodium and sodium-potassium alloys being most preferred. Each stage of the Group 1 metal / silica gel composition of the invention may be used as a reducing agent reacting with a number of reducible organic materials in the same manner known for alkali metals and their alloys.
Owner:SIGNA CHEM INC +1

Method for reducing contact resistance based on low-melting-point metal and oxide thereof

The invention relates to a method for reducing contact resistance based on low-melting-point metal and an oxide thereof. By coating the low-melting-point metal and the oxide thereof between electric terminals connected with machinery, the contact resistance between the mechanical electric terminals is reduced effectively. The invention further relates to a conductive paste composing of the low-melting-point metal and the oxide thereof. The oxide takes 0.05% to 50% of the total weight of the conductive paste. The low-melting-point metal is one type or a combination of any two types selected from sodium, potassium, lithium, rubidium, cesium, gallium, indium, mercury, lead bismuth alloy, gallium-base binary alloy, gallium-base complex alloy, indium-base alloy, bismuth-base alloy, mercury-base alloy and sodium-potassium alloy which are lower than 200 DEG C in melting point. With the compound of the low-melting-point metal and the oxide thereof as the conducting medium, the method for reducing contact resistance can effectively reduce the contact resistance between the electric terminals connected with the machinery, significantly reduce the contact resistance heat effect, improve transmission efficiency of electric energy and prolong the service life of the machinery. The method for reducing contact resistance based on the low-melting-point metal and the oxide thereof can be widely applied to the technical fields of electric power and energy.
Owner:郭瑞

Silicide compositions containing alkali metals and methods of making the same

The invention relates to Group 1 metal/silica gel compositions comprising silica gel and an alkali metal or an alkali metal alloy. The compositions of the inventions are described as Stage 0, I, II, and III materials. These materials differ in their preparation and chemical reactivity. Each successive stage may be prepared directly using the methods described below or from an earlier stage material. Stage 0 materials may, for example, be prepared using liquid alloys of Na and K which are rapidly absorbed by silica gel (porous Si02) under isothermal conditions, preferably at or just above room temperature, to form loose black powders that retain much of the reducing ability of the parent metals. When the low melting Group 1 metals are absorbed into the silica gel, a mild exothermic reaction produces Stage I material, loose black powders that are indefinitely stable in dry air. Subsequent heating to 400 DEG C produces Stage II materials, which are also loose black powders. Further heating above 400 DEG C forms Stage III material with release of some Group 1 metal. It is believed that Stage I, II and III materials represent reductions of the silica gel after absorption of the Group 1 metal. Preferred Group 1 metal/silica gel compositions of the invention are those containing sodium, potassium, or sodium-potassium alloys with sodium and sodium- potassium alloys being most preferred. Each stage of the Group 1 metal/silica gel composition of the invention may be used as a reducing agent reacting with a number of reducible organic materials in the same manner known for alkali metals and their alloys.
Owner:SIGNA CHEM INC +1

PCIe (Peripheral Component Interconnect Express) equipment and detection method thereof

The invention relates to PCIe (Peripheral Component Interconnect Express) equipment and a detection method thereof. The PCIe equipment comprises a PCIe port, wherein the PCIe port can be in a DP (Downstream Port) of a PICe bridge and also can be in a RP (Root Point) of a CPU (Central Processing Unit). One example comprises the following steps: a PCIe kernel unit receives a transmission layer message issued from the CPU or an UP (Upstream Port) and issues the message to an EP (End Point); an exception detection unit detects a process that the port issues the message to the EP, identifies whether the process has message retransmission exception, such as ACK/NAK (Acknowledge/Negative Acknowledge) message exception or fluid control credit value update exception or not, and the exception detection unit outputs a hardware chain scission enable signal when no credit value exception is in the presence; and a hardware chain scission unit disconnects the link of the PCIe port and the EP according to the signal. The embodiment of the invention detects and processes ACK/NAK message or fluid control credit value update which can not be perceived but can cause the exception including CPU crash so as to guarantee that the CPU can normally work, and the reliability of the PCIe system and the compatibility of the system on a drive program can be improved.
Owner:HUAWEI TECH CO LTD

Titanium oxide and alumina alkali metal compositions

The invention relates to Group 1 metal / porous metal oxide compositions comprising porous metal oxide selected from porous titanium oxide and porous alumina and an alkali metal or an alkali metal alloy. The compositions of the inventions are described as Stage 0 and I materials. These materials differ in their preparation and chemical reactivity. Each successive stage may be prepared directly using the methods described below or from an earlier stage material. Stage 0 materials may, for example, be prepared using liquid alloys of Na and K which are rapidly absorbed by porous metal oxide under isothermal conditions, preferably at or just above room temperature, to form loose black powders that retain much of the reducing ability of the parent metals. When the low melting Group 1 metals are absorbed into the porous metal oxide at about 150° C., an exothermic reaction produces Stage I material, loose black powders that are stable in dry air. Further heating forms higher stage materials of unknown composition. It is believed that Stage I higher materials represent reductions of the porous metal oxide after absorption of the Group 1 metal. Preferred Group 1 metal / porous metal oxide compositions of the invention are those containing sodium, potassium, or sodium-potassium alloys with sodium and sodium-potassium alloys being most preferred. Each stage of the Group 1 metal / porous metal oxide composition of the invention may be used as a reducing agent reacting with a number of reducible organic materials in the same manner known for alkali metals and their alloys.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products