Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

118results about "Electrode systems manufacture" patented technology

Free-standing and aligned carbon nanotubes and synthesis thereof

One or more highly-oriented, multi-walled carbon nanotubes are grown on an outer surface of a substrate initially disposed with a catalyst film or catalyst nano-dot by plasma enhanced hot filament chemical vapor deposition of a carbon source gas and a catalyst gas at temperatures between 300° C. and 3000° C. The carbon nanotubes range from 4 to 500 nm in diameter and 0.1 to 50 μm in length depending on growth conditions. Carbon nanotube density can exceed 104 nanotubes / mm2. Acetylene is used as the carbon source gas, and ammonia is used as the catalyst gas. Plasma intensity, carbon source gas to catalyst gas ratio and their flow rates, catalyst film thickness, and temperature of chemical vapor deposition affect the lengths, diameters, density, and uniformity of the carbon nanotubes. The carbon nanotubes of the present invention are useful in electrochemical applications as well as in electron emission, structural composite, material storage, and microelectrode applications.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Method of manufacturing a lamp assembly

A lamp assembly configured to inductively receive power from a primary coil. The lamp assembly includes a lamp circuit including a secondary and a lamp connected in series. In a first aspect, the lamp circuit includes a capacitor connected in series with the lamp and the secondary to tune the circuit to resonance. The capacitor is preferably selected to have a reactance that is substantially equal to or slightly less than the reactance of the secondary and the impedance of the lamp. In a second aspect, the lamp assembly includes a sealed transparent sleeve that entirely encloses the lamp circuit so that the transparent sleeve is fully closed and unpenetrated. The transparent sleeve is preferably the lamp sleeve itself, with the secondary, capacitor and any desired starter mechanism disposed within its interior.
Owner:PHILIPS IP VENTURES BV

LED light bulbs

LED light bulbs include openings in base or cover portions, and optional forced flow elements, for convective cooling. Thermally conductive optically transmissive material may be used for cooling, optionally including fins. A LED light engine may be fabricated from a substrate via planar fabrication techiques and shaped to form a substantially rigid upright support structure. Mechanical, electrical, and thermal connections may be made between a LED light engine and a LED light bulb.
Owner:IDEAL IND LIGHTING LLC

Modular Networked Light Bulb

Various methods of manufacturing a lighting apparatus and embodiments of a modular networked lighting apparatus are disclosed. One method defines a mechanical form factor with a minimum set of electrical connections for a networking module, builds a subassembly of the networked lighting apparatus, the subassembly comprising attachment points compatible with the mechanical form factor for the networking module and contacts for the minimum set of electrical connections for the networking module, installs a networking module into the subassembly of the networked lighting apparatus, the networking module compatible with a selected networking protocol for the networked lighting apparatus, completes the final assembly of the networked lighting module, and marks the networked lighting apparatus to indicate the selected networking protocol for the networked lighting apparatus. In some embodiments, the lighting apparatus may function without the networking module installed. One embodiment of the modular, networked light bulb has means for supporting and holding an electronics module conforming with a predetermined form factor in place, and means for allowing the electronics module to control at least a brightness level of the at least one LED. The modular networked light bulb may have a networked controller conforming with the predetermined form factor used as the electronics module. The networked controller is able to connect to a network and may be positioned and held by the means for supporting and holding an electronics module.
Owner:SIGNIFY HLDG BV

Substrate-supported aligned carbon nanotube films

InactiveUS7799163B1Conveniently routedIncreases potential applicationMaterial nanotechnologyCarbon compoundsNanotube
This invention relates to a process for preparing a substrate-supported aligned carbon nanotube film including: synthesizing a layer of aligned carbon nanotubes on the substrate capable of supporting nanotube growth, applying a layer of a second substrate to a top surface of aligned carbon nanotube layer, removing said substrate capable of supporting nanotube growth to provide an aligned carbon nanotube film supported on said second substrate.
Owner:UNIV OF DAYTON THE

Curing binder material for carbon nanotube electron emission cathodes

A binder material, inorganic polymer, is used to formulate carbon nanotube pastes. This material can be cured at 200° C. and has a thermal-stability up to 500° C. Low-out gassing of this binder material makes it a good candidate for long life field emission devices. Due to better adhesion with this binder material, a strong adhesive peelable polymer from liquid form can be applied on the CNT cathode to achieve a uniform activation with even contact and pressure on the surface. The peelable polymer films may be used both as an activation layer and a mask layer to fabricate high-resolution patterned carbon nanotube cathodes for field emission devices using lithographic processes.
Owner:SAMSUNG ELECTRONICS CO LTD

Method for manufacturing porous structure and method for forming pattern

A pattern forming material contains a block copolymer or graft copolymer and forms a structure having micro polymer phases, in which, with respect to at least two polymer chains among polymer chains constituting the block copolymer or graft copolymer, the ratio between N / (Nc-No) values of monomer units constituting respective polymer chains is 1.4 or more, where N represents total number of atoms in the monomer unit, Nc represents the number of carbon atoms in the monomer unit, No represents the number of oxygen atoms in the monomer unit.
Owner:KK TOSHIBA

Modular networked light bulb

Various methods of manufacturing a lighting apparatus and embodiments of a modular networked lighting apparatus are disclosed. One method defines a mechanical form factor with a minimum set of electrical connections for a networking module, builds a subassembly of the networked lighting apparatus, the subassembly comprising attachment points compatible with the mechanical form factor for the networking module and contacts for the minimum set of electrical connections for the networking module, installs a networking module into the subassembly of the networked lighting apparatus, the networking module compatible with a selected networking protocol for the networked lighting apparatus, completes the final assembly of the networked lighting module, and marks the networked lighting apparatus to indicate the selected networking protocol for the networked lighting apparatus. In some embodiments, the lighting apparatus may function without the networking module installed. One embodiment of the modular, networked light bulb has means for supporting and holding an electronics module conforming with a predetermined form factor in place, and means for allowing the electronics module to control at least a brightness level of the at least one LED. The modular networked light bulb may have a networked controller conforming with the predetermined form factor used as the electronics module. The networked controller is able to connect to a network and may be positioned and held by the means for supporting and holding an electronics module.
Owner:SIGNIFY HLDG BV

Metallization of carbon nanotubes for field emission applications

The present invention is directed towards metallized carbon nanotubes, methods for making metallized carbon nanotubes using an electroless plating technique, methods for dispensing metallized carbon nanotubes onto a substrate, and methods for aligning magnetically-active metallized carbon nanotubes. The present invention is also directed towards cold cathode field emitting materials comprising metallized carbon nanotubes, and methods of using metallized carbon nanotubes as cold cathode field emitters.
Owner:NANO

Method for recovery and reuse of gas

A gas recovery and reuse / recycle method is disclosed which can readily and economically recover valuable and / or environmentally hazardous gases from a manufacturing or chemical process and then return the gas to the process for reuse, and repeat this many times without significant contamination or degradation of the gas or the produced products. All gas transport, compression and storage equipment is designed and maintained so that it is non-contaminating to the process gas. Commonly the process gas will be a Group VIII gas, preferably He, Ne, Kr or Xe, or a gas which comprises a hazard to the ambient environment or beings therein, such as a carbon oxide gas, a halocarbon gas, an acid-precursor gas, a biologically hazardous gas, or a radioactive gas.
Owner:ENTEGRIS INC

FED cathode structure using electrophoretic deposition and method of fabrication

A method of fabricating a field emission device cathode using electrophoretic deposition of carbon nanotubes in which a separate step of depositing a binder material onto a substrate, is performed prior to carbon nanotube particle deposition. First, a binder layer is deposited on a substrate from a solution containing a binder material. The substrate having the binder material deposited thereon is then transferred into a carbon nanotube suspension bath allowing for coating of the carbon nanotube particles onto the substrate. Thermal processing of the coating transforms the binder layer properties which provides for the adhesion of the carbon nanotube particles to the binder material.
Owner:MOTOROLA SOLUTIONS INC

Light emitting device and method for manufacturing same, lighting fixture, and lighting system

A light emitting device includes: a light emitting element; a substrate including a groove-like light guide extending along a first direction, emission light emitted from the light emitting element and introduced into the light guide being reflected by an inner wall surface of the light guide, spreading along the first direction, and being turned into upward light directed upward above the substrate; and a lens provided above the light guide and configured to collect the upward light and control light distribution characteristic in a plane generally perpendicular to the first direction.
Owner:HARISON TOSHIBA LIGHTING CORP +1

LED replacement lamp and a method of replacing preexisting luminaires with LED lighting assemblies

A lighting apparatus for retrofitting an existing luminaire includes a plurality of light emitting diodes (LED) of similar or differing wavelengths arranged and configured in at least one light bar array, a heat sink module thermally coupled to the at least one light bar array, an electronic power module electrically coupled to the at least one light bar array, and a plate coupled to the at least one light bar array, electronic power module and the heat sink module, the plate arranged and configured for coupling to the luminaire to provide quick and easy installation and replacement of the at least one light bar array, heat sink module and electronic power module into and from the luminaire.
Owner:SIGNIFY HLDG BV

Processing apparatus which performs predetermined processing while supplying a processing liquid to a substrate

Above a substrate holder 1, an ordinary fluid jet nozzle 2 which is capable of injecting drops of a solution having ordinary particle diameters, a fine fluid jet nozzle 3 which is capable of injecting drops of a solution having fine particle diameters which are smaller than the ordinary particle diameters, and a regular reflection laser displacement gauge 4 are disposed. These are attached on the same plate, thereby forming a head 10. The head 10 freely moves in directions X, Y and Z, as an X-axis drive portion 41, Y-axis drive portions 42 and 43 and a Z-axis drive portion 44 operate in accordance with operation commands received from a controller 50 which controls the apparatus as a whole. It is therefore possible to set the head 10 to a predetermined position on a substrate S which is held by the substrate holder 1. Thus, the respective nozzles supply the solutions to any desired positions the substrate S.
Owner:NAT INST OF ADVANCED IND SCI & TECH

Probe System Comprising an Electric-Field-Aligned Probe Tip and Method for Fabricating the Same

A mechanically stable and oriented scanning probe tip comprising a carbon nanotube having a base with gradually decreasing diameter, with a sharp tip at the probe tip. Such a tip or an array of tips is produced by depositing a catalyst metal film on a substrate (10 & 12 in FIG. 1(a)), depositing a carbon dot (14 in FIG. 1(b)) on the catalyst metal film, etching away the catalyst metal film (FIG. 1(c)) not masked by the carbon dot, removing the carbon dot from the catalyst metal film to expose the catalyst metal film (FIG. 1(d)), and growing a carbon nanotube probe tip on the catalyst film (16 in FIG. 1(e)). The carbon probe tips can be straight, angled, or sharply bent and have various technical applications.
Owner:RGT UNIV OF CALIFORNIA

Deposition method for nanostructure materials

A method for depositing a coating of a nanostructure material onto a substrate includes: (1) forming a solution or suspension of containing the nanostructure material; (2) selectively adding “chargers” to the solution; (3) immersing electrodes in the solution, the substrate upon which the nanostructure material is to be deposited acting as one of the electrodes; (4) applying a direct and / or alternating current electrical field between the two electrodes for a certain period of time thereby causing the nanostructure materials in the solution to migrate toward and attach themselves to the substrate electrode; and (5) subsequent optional processing of the coated substrate.
Owner:NURAY TECH +1

Process of making a component with a passageway

A component is provided that includes at least one passageway. In another aspect, a component, such as a lamp or a vehicular washer jet, is made of layers of material, a light curable material and / or multiple built-up materials. Another aspect uses a three-dimensional printing machine to emit material from an ink jet printing head to build up a component.
Owner:A RAYMOND & CO

Crystals comprising single-walled carbon nanotubes

The invention is directed to a method of manufacturing single-walled carbon nanotubes comprising the steps of providing on a substrate at least one pillar comprising alternate layers of a first precursor material comprising fullerene molecules and a second precursor material comprising a catalyst, and heating the at least one pillar in the presence of a first magnetic or electric field. It further is directed to a precursor arrangement for manufacturing single-walled carbon nanotubes comprising on a substrate at least one pillar comprising alternate layers of a first precursor material comprising fullerene molecules and a second precursor material comprising a catalyst. A third aspect is a nanotube arrangement comprising a substrate and thereupon at least one crystal comprising a bundle of single-walled carbon nanotubes with essentially identical orientation and structure.
Owner:IBM CORP

Macroscopic ordered assembly of carbon nanotubes

The present invention is directed to the creation of macroscopic materials and objects comprising aligned nanotube segments. The invention entails aligning single-wall carbon nanotube (SWNT) segments that are suspended in a fluid medium and then removing the aligned segments from suspension in a way that macroscopic, ordered assemblies of SWNT are formed. The invention is further directed to controlling the natural proclivity or nanotube segments to self assemble into or ordered structures by modifying the environment of the nanotubes and the history of that environment prior to and during the process. The materials and objects are “macroscopic” in that they are large enough to be seen without the aid of a microscope or of the dimensions of such objects. These macroscopic ordered SWNT materials and objects have the remarkable physical, electrical, and chemical properties that SWNT exhibit on the microscopic scale because they are comprised of nanotubes, each of which is aligned in the same direction and in contact with its nearest neighbors. An ordered assembly of closest SWNT also serves as a template for growth of more and larger ordered assemblies. An ordered assembly further serves as a foundation for post processing treatments that modify the assembly internally to specifically enhance selected material properties such as shear strength, tensile strength, compressive strength, toughness, electrical conductivity, and thermal conductivity.
Owner:RICE UNIV

Direct-write deposition of phosphor powders

A liquid suspension of phosphor particles and method for depositing the liquid suspension. The suspension advantageously has a low viscosity with a high solids-loading of phosphor particles. The apparent density of the phosphor particles is well-controlled to enable the particles to be dispersed in the liquid vehicle. The suspension is useful in direct-write tools such as ink-jet devices.
Owner:SICPA HLDG SA

Metallization of carbon nanotubes for field emission applications

The present invention is directed towards metallized carbon nanotubes, methods for making metallized carbon nanotubes using an electroless plating technique, methods for dispensing metallized carbon nanotubes onto a substrate, and methods for aligning magnetically-active metallized carbon nanotubes. The present invention is also directed towards cold cathode field emitting materials comprising metallized carbon nanotubes, and methods of using metallized carbon nanotubes as cold cathode field emitters.
Owner:NANO

Pixel array

The present invention includes a chemical monolayer construction that comprises: (a) a substrate having a contact surface; and (b) a plurality of substantially parallel molecular units, wherein said molecular units are attached to said substrate so as to be strongly coupled electronically to said substrate, such as through a conjugated bond. The present invention also includes electronic circuit components and devices including a chemical monolayer construction of the present invention.
Owner:THE OHIO STATE UNIV RES FOUND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products