Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

114 results about "Halocarbon" patented technology

Halocarbon compounds are chemicals in which one or more carbon atoms are linked by covalent bonds with one or more halogen atoms (fluorine, chlorine, bromine or iodine – group 17) resulting in the formation of organofluorine compounds, organochlorine compounds, organobromine compounds, and organoiodine compounds. Chlorine halocarbons are the most common and are called organochlorides.

Process for the manufacture of halocarbons and selected compounds and azeotropes with HF

A liquid phase process is disclosed for producing halogenated alkane adducts of the formula CAR1R2CBR3R4 (where A, B, R1, R2, R3, and R4 are as defined in the specification) which involves contacting a corresponding halogenated alkane, AB, with a corresponding olefin, CR1R2═CR3R4 in a dinitrile or cyclic carbonate ester solvent which divides the reaction mixture into two liquid phases and in the presence of a catalyst system containing (i) at least one catalyst selected from monovalent and divalent copper; and optionally (ii) a promoter selected from aromatic or aliphatic heterocyclic compounds which contain at least one carbon-nitrogen double bond in the heterocyclic ring. When hydrochlorofluorocarbons are formed, the chlorine content may be reduced by reacting the hydrochlorofluorocarbons with HF. New compounds disclosed include CF3CF2CCl2CH2CCl3, CF3CCl2CH2CH2Cl and CF3CCl2CH2CHClF. These compounds are useful as intermediates for producing hydrofluorocarbons. Azeotropes of CClF2CH2CF3 with HF and azeotropes of CF3CH2CHF2 with HF are also disclosed; as are process for producing such azeotropes. A process for purification of certain hydrofluorocarbons and / or chloro-precursors thereof from mixtures of such compounds with HF is also disclosed.
Owner:THE CHEMOURS CO FC LLC

METHOD, SYSTEM, AND APPARATUS FOR THE GROWTH OF ON-AXIS SiC AND SIMILAR SEMICONDUCTOR MATERIALS

A novel approach for the growth of high-quality on-axis epitaxial silicon carbide (SiC) films and boules, using the Chemical Vapor Deposition (CVD) technique, is described here. The method includes a method of substrate preparation, which allows for the growth of “on-axis” SiC films, plus an approach giving the opportunity to grow silicon carbide on singular (a small-angle miscut) substrates, using halogenated carbon-containing precursors (carbon tetrachloride, CCl4, or halogenated hydrocarbons, CHCl3, CH2Cl2, or CH3Cl, or similar compounds or chemicals), or introducing other chlorine-containing species, in the gas phase, in the growth chamber. At gas mixtures greater than the critical amount, small clusters of SiC are etched, before they can become stable nuclei. The presence of chlorine and the formation of gas species allow an increased removal rate of these nuclei, in contrast to the growth without the presence of chlorine. Or, alternatively, the novel precursors introduced in the growth system reduce the effective supersaturation ratio of the Si species in the growth layer. The reduction of the supersaturation ratio reduces or eliminates the 2D (and 3C—SiC) nucleation which would occur due to the large terrace widths present on the on-axis wafers. This allows the growth of Silicon Carbide epitaxial layers on SiC substrates or composite substrates with monocrystalline layers. This can also be applied to the other semiconductors, chemicals, compounds, materials, growth methods, or devices.
Owner:WIDETRONIX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products