Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

885results about "Gastight accumulators" patented technology

Three dimensional free form battery apparatus

A battery apparatus comprising a casing, at least two stacked lithium ion cells a member for maximizing the utilization of the casing and a member for precluding inadvertent deformation of the casing. The casing includes a non-uniform inner periphery. Each of at least two stacked lithium ion cells is positioned within the casing. The utilization maximizing member maximizes the utilization of the inner periphery of the casing by facilitating the independent shaping of each of the at least two stacked lithium ion cells to confirm to the inner periphery. As a result, the shape of one cell does not limit or dictate the shape of any other cell. The deformation precluding member is associated with each of the at least two lithium ion cells, and, substantially precludes inadvertent deformation of the casing by the at least two lithium ion cells, during cell cycling and storage. The invention further includes a process for fabricating a battery apparatus.
Owner:MITSUBISHI CHEM CORP

Non-sintered type thin electrode for battery, battery using same and process for same

An electrode substrate is formed by mechanically processing a nickel foil so as to be made three dimensional through the creation of concave and convex parts, and then, this substrate is filled with active material or the like so that an electrode is manufactured, wherein the above described concave and convex parts are rolling pressed so as to incline in one direction. Furthermore, an electrode for secondary battery is formed by using the above described method.
Owner:THE UNIV OF QUEENSLAND

Non-aqueous battery of a thin configuration

A non-aqueous battery is provided in a pouchy casing comprising opposing sheets of at least three-layer laminates, each laminate comprising (1) an inner thermoplastic resin layer, (2) a middle metal foil layer, and (3) an outer electrically insulating material layer, wherein the pouchy casing has an elongated, hermetic adhesion area along a periphery of the pouchy casing, and the middle metal foil layer has a peripheral elongated region in the elongated, hermetic adhesion area of the pouchy casing, and at least a pair of terminals electrically connected to the cathode and anode of the battery extends through and protrudes from the terminal-withdrawal sites in the elongated, hermetic adhesion area toward the outside of the pouchy casing, and the battery has at least one of the following features: (i) the peripheral elongated region of the middle metal foil layer has cut-out portions around the terminal-withdrawal sites and (ii) the surface of the peripheral edge of the pouchy casing is provided with electric insulation at least at portions around the terminal-withdrawal sites.
Owner:ASAHI KASEI ELECTRONICS CO LTD

Nonaqueous electrolyte

A nonaqueous electrolyte battery includes a positive electrode containing an active material, a negative electrode, and a nonaqueous electrolyte, the negative electrode including a current collector and a negative electrode active material supported by the current collector, the negative electrode active material having a Li insertion potential not lower than 0.2V (vs. Li / Li+) and an average primary particle diameter not larger than 1 μm, and a specific surface area of the negative electrode, excluding a weight of the current collector, as determined by the BET method falls within a range of 3 to 50 m2 / g.
Owner:KK TOSHIBA

Compliant seal structures for protected active metal anodes

Protected anode architectures have ionically conductive protective membrane architectures that, in conjunction with compliant seal structures and anode backplanes, effectively enclose an active metal anode inside the interior of an anode compartment. This enclosure prevents the active metal from deleterious reaction with the environment external to the anode compartment, which may include aqueous, ambient moisture, and / or other materials corrosive to the active metal. The compliant seal structures are substantially impervious to anolytes, catholyes, dissolved species in electrolytes, and moisture and compliant to changes in anode volume such that physical continuity between the anode protective architecture and backplane are maintained. The protected anode architectures can be used in arrays of protected anode architectures and battery cells of various configurations incorporating the protected anode architectures or arrays.
Owner:POLYPLUS BATTERY CO INC

Secondary battery of assemble-type structure

Provided is a secondary battery of an assemble-type structure, comprising: a cell body including an electrode assembly of cathode / separator / anode sealed therein; and a cap assembly including a protection circuit electrically connected to the cell body so as to control overcharge, overdischarge and overcurrent of the battery and a cap housing covering an upper part of the battery, and being detachably coupled to the cell body. In accordance with the present invention, since the cap assembly including the protection circuit, cap housing and the like is assembled detachably from the cell body and electrically connected to and also can be physically firmly fixed to one another, provided are effects capable of greatly reducing the manufacturing process steps of the battery, and solving all the problems associated with use of battery cases and insert injection molding. Therefore, the present invention can reduce battery production costs and rejection rate, facilitate greater ease of re-working upon occurrence of rejection in particular components and realize more efficient automation of the battery manufacturing process.
Owner:LG ENERGY SOLUTION LTD

Secondary battery

Provided is a secondary battery in which high energy density can be obtained and charging / discharging cycle characteristic can be improved. A positive electrode (13) and a negative electrode (15) are stacked with a separator (16) interposed therebetween, and are enclosed inside an exterior can (11) to which an electrolyte is injected. The negative electrode (15) contains a negative electrode material capable of occluding / releasing lithium in an ionic state. Thereby, lithium metal precipitates in the negative electrode (15) in a state where the open circuit voltage is lower than the overcharge voltage. In other words, lithium is occluded in an ionic state in a negative electrode material capable of occluding / releasing lithium in the beginning of charging, and then lithium metal precipitates on the surface of the negative electrode material thereafter during charging. The amount of precipitation of lithium metal is preferable to be from 0.05 to 3.0 times, both inclusive, the ability of charging capacity of the negative electrode material capable of occluding / releasing lithium. Thereby, a high energy density and an excellent cycle characteristic can be obtained.
Owner:MURATA MFG CO LTD

Cylindrical lithium-ion battery

A cylindrical lithium-ion battery with excellent safety where abnormal heat generation and remarkable deformation of a battery container do not occur even at an abnormal time is provided. When an average diameter of a winding group 6 is A mm, an inner diameter of the battery container 5 is B mm, a longitudinal length of the winding group 6 except for lead pieces extending from the winding group 6 is H mm, and the number of windings where a layer of one unit comprising a negative electrode member / separator / negative electrode member / separator is wound around a shaft core 11 is W, a calculation value K obtained by a formula; K=(B-A)x(10000 / (WxH) is set to 0.89 or more. When the calculation value K is 0.89 or more, a gap (B-A) between an outer periphery of the winding group 6 and an inner periphery of the battery container 5 that enables the winding group 6 to expand in its diameter direction at an abnormal time is properly secured.
Owner:HITACHI VEHICLE ENERGY

Structure for electrode terminals of battery module

On the opposite end walls of a flat, prismatic battery case of a battery module where electrode terminals are attached, protruding components are formed such as to protrude further than the electrode terminals. Terminal holes are formed in the end walls in which the electrode terminals are fitted, and the thickness of the end walls of the integral battery case in the vicinity of the terminal holes is not the same on both sides of each of the terminal holes. Also, one or a plurality of vertical and horizontal ribs are formed on the end walls between the electrode terminals and the protruding components. Further, a sealing structure is included for a battery.
Owner:PANASONIC CORP +1

Battery assembly with heat sink

A multi-cell battery comprising a housing having one or more partitions dividing the housing into a plurality of regions. A dielectric material lines the surfaces of the housing within each of the regions and an electrochemical cell is disposed within each of the regions. The housing is used as a heat sink to draw heat away from the individual electrochemical cells during operation.
Owner:OVONIC BATTERY CO INC

Secondary battery replacement method

A replacement method is provided for replacing a to-be-replaced battery module with a replacing fresh battery module in a battery assembly formed by electrically connecting a plurality of battery modules in series or parallel. The method includes the step (S110) of charging the fresh battery module so that the quantity of charged electricity of the fresh battery module is 5 to 20% less than the quantity of charged electricity of a battery module other than the to-be-replaced battery module, and the step (S120) of replacing the to-be-replaced battery module with the charged fresh battery module.
Owner:TOYOTA JIDOSHA KK

Battery module having a plurality of interconnected batteries

A plurality of cells each encased in prismatic cell cases having short lateral walls and long lateral walls are arranged side by side, with adjacent short lateral walls being integral with each other, thereby constituting an integral battery case. The upper open ends of the plurality of prismatic cell cases are integrally closed by a single lid member. Each of the cells accommodates therein a group of electrodes stacked alternately upon one another parallel to the long lateral walls of the cell cases with intervening separators therebetween. Neighboring cells are connected in series at their abutting lateral opposite ends with each other.
Owner:PANASONIC CORP +1

Battery module, and rechargeable battery for constituting the battery module

A battery module is provided which includes multiple rechargeable batteries coupled together. The battery module includes multiple prismatic cell cases having short lateral walls and long lateral walls arranged side by side. Adjacent short lateral walls are integral with each other. The battery module includes holes extending through the short lateral walls of the cell cases at upper edge portions. The battery module also includes a pair of frame fittings that have base ends and protruding portions in each of the cell cases for connecting two adjacent cell cases. The protruding portions of the pair of frame fittings extend into the through holes in the upper edge portions of the short lateral walls of the cell cases from both sides and are welded together. Positive and negative electrode collector plates in the cell cases are respectively attached to the base ends of the frame fittings. End frame fittings that have base ends and protruding portions for cell cases are located at both outer ends of the rechargeable battery for connecting the cell cases to outside terminals. Connection terminals that have protruding portions are connected to the end frame fittings at both outer ends of the rechargeable battery.
Owner:PANASONIC CORP +1

Mechanical and thermal improvements in metal hydride batteries, battery modules, and battery packs

Mechanically and thermally improved rechargeable batteries, modules and fluid-cooled battery pack systems. The battery is prismatic in shape with an optimized thickness to width to height aspect ratio which provides the battery with balanced optimal properties when compared with prismatic batteries lacking this optimized aspect ratio. The optimized thickness, width and height allow for maximum capacity and power output, while eliminating deleterious side affects. The battery case design allows for unidirectional expansion which is readily compensated for by applying external mechanical compression counter to that direction. In the module, the batteries are bound within a module bundling / compression means under external mechanical compression which is optimized to balance outward pressure due to expansion and provide additional inward compression to reduce the distance between the positive and negative electrodes, thereby increasing overall battery power. The fluid-cooled battery pack includes; 1) a battery-pack case having coolant inlet and outlet; 2) battery modules within the case such that the battery module is spaced from the case walls and from other battery modules to form coolant flow channels along at least one surface of the bundled batteries; and 3) at least one coolant transport means. The width of the coolant flow channels allows for maximum heat transfer. Finally the batteries, modules and packs can also include means for providing variable thermal insulation to at least that portion of the rechargeable battery system which is most directly exposed to said ambient thermal condition, so as to maintain the temperature of the rechargeable battery system within the desired operating range thereof under variable ambient conditions.
Owner:CHEVRON TECH VENTURES

Auxiliary battery for portable devices

An auxiliary battery for portable devices that can be used for a variety of applications with high power capacity. The auxiliary battery includes a power input section for receiving electric power from an external power source, a power storage section having a secondary battery for receiving a charge current from the power input section, a power output section having one or more output terminals for producing electric power at output terminals, and an power switch circuit for selectively inputting electric power to the power output section either from the power input section or from the power storage section.
Owner:TOYO SYSTEM CO LTD

Battery module, and connecting structure of cells in the battery module

The battery module comprises a plurality of cells encased in prismatic cell cases having short lateral walls and long lateral walls coupled together as one piece. Each of the cells accommodates therein a group of electrode plates and liquid electrolyte, wherein collector plates are connected respectively to the groups of positive and negative electrode plates at opposite lateral edges thereof. Connection holes are formed at upper edge portions of the short lateral walls of the cell cases, and the collector plates are formed with connection bosses that fit into the connection holes, so that the connection bosses of the collector plates in neighboring cells are abutted each other and welded together, whereby two adjacent cells are connected to each other.
Owner:PANASONIC CORP +1

Bipolar battery and a method for manufacturing a bipolar battery

The present invention relates to a bipolar battery, especially a NiMH battery, having: a sealed housing, a negative end terminal, a positive end terminal, and at least one biplate assembly comprising a biplate, a positive and a negative electrode. A separator is arranged between each negative and positive electrode forming a battery cell, said separator includes an electrolyte. An inner barrier of a hydrophobic material is arranged around at least one electrode, whereby said inner barrier prevents an electrolyte path from one cell to another cell, and a frame is present to provide predetermined cell spacing between each biplate and / or biplate and end terminal. The frame is attached in such a way to each biplate to permit ambient gas to pass between adjacent cells, thereby creating a common gas space for all cells in the battery. The invention also relates to a method for manufacturing a bipolar battery.
Owner:NILAR INT AB

Nickel-metal hydride secondary battery

A nickel-metal hydride secondary battery comprising electrode group comprising positive electrode comprised mainly of nickel hydroxide, negative electrode comprised mainly of a hydrogen storage alloy, and separator being disposed between the positive electrode and the negative electrode, wherein the electrode group is sealed in battery casing, together with an alkali electrolyte liquid, wherein, in the battery, a W element and an Na element are present simultaneously. The nickel-metal hydride secondary battery of the present invention is advantageous not only in that it exhibits high utilization of the active material and excellent self-discharge characteristics in a high temperature storage as well as high charging efficiency in a high temperature environment, but also in that it has excellent large current discharge characteristics.
Owner:TOSHIBA BATTERY +1

Bipolar battery and biplate assembly

The present invention relates to a bipolar battery having at least two battery cells comprising: a sealed housing, a negative end terminal, a positive end terminal, at least one biplate assembly arranged in a sandwich structure between said negative and positive end terminals, and a separator, including an electrolyte, arranged between each negative and positive electrode forming a battery cell. The biplate assembly is provided with an inner barrier of a hydrophobic material around the negative and the positive electrode, respectively, and an outer seal around the edge of each biplate. Each end terminal is provided with a terminal seal. The edge of each biplate is positioned close to the sealed housing to provide means to conduct heat from each biplate assembly to the ambient environment. The invention also relates to a method for manufacturing a bipolar battery and a biplate assembly.
Owner:NILAR INT AB

Battery, battery charger, electrical system and method of charging a battery

A battery, a battery charger, an electrical system, and a method of charging a battery. In one aspect, the battery includes a housing, a battery cell supported by the housing, a first terminal electrically connected to the battery cell and having a first terminal end, and a second terminal electrically connected to the battery cell and having a second terminal end, the second terminal end extending forwardly of the first terminal end. In another aspect, the battery charger includes a charger housing, a charging circuit supported by the charger housing and connectable to a power source, a first charger terminal connected to the charging circuit and having a first charger terminal end, the first charger terminal being connectable to the first battery terminal, and a second charger terminal connected to the charging circuit and having a second charger terminal end, the second charger terminal being connectable to the second battery terminal, the second charger terminal end extending forwardly of the first charger terminal end.
Owner:MILWAUKEE ELECTRIC TOOL CORP

Rechargeable battery

The present invention discloses a rechargeable battery that has an improved mounting structure for an electrode terminal and a second protective device used therein. This improved structure improves the function of the rechargeable battery. The rechargeable battery comprises an electrode assembly that has first electrode plate, a second electrode plate, and a separator for insulating the electrode plates from each other, all of which are wound together. It also includes a can that contains the electrode assembly therein, a cap assembly that has a cap plate for sealing a top opening of the can, an electrode terminal that is insulated and inserted into a terminal through-hole formed on the cap plate, and a terminal groove formed on the top of the terminal through-hole with a shape corresponding to that of the head of the electrode terminal so that the head of the electrode terminal can be housed therein. The rechargeable battery of the present invention also includes a protective device groove spaced at a predetermined distance from the terminal groove and a second protective device housed in the protective device groove with one end connected to the top surface of the electrode terminal.
Owner:SAMSUNG SDI CO LTD

Electrode, method of its production, metal-air fuel cell and metal hydride cell

The invention described concerns an anode electrode comprising a hydrogen storage material / alloy and a high energy density metal. In addition a hydrogen electrocatalyst may be added to increase the hydrogen reaction rate. The high energy density metal is selected from a group consisting of Al, Zn, Mg and Fe, or from a combination of these metals. A method of production of an electrode comprising a hydrogen storage alloy and a high energy density metal is also described. The method comprises sintering or binding a high energy density metal powder and / or hydrogen storage alloy into at least one thin street, and calendaring or pressing said sheet forming the electrode. The anode electrode may be used in metal hydride batteries and metal air fuel cells.
Owner:REVOLT TECH LTD

Encapsulated fire-retardant materials to improve battery safety

This invention provides a battery, such as a lithium-ion battery, that includes an encapsulated fire-retardant material. In some embodiments, stable polymer spheres are used to encapsulate an effective fire-retardant material. Under normal operating conditions, the fire-retardant material does not contact the electrolyte, cathode, or anode, thus minimizing performance reduction that occurs when fire-retardant materials are in the direct presence of the electrolyte. Under thermal runaway or excessive temperatures, the fire retardant material vaporizes through the melted encapsulating phase, thereby releasing fire-retardant material to minimize or prevent flammability in the battery.
Owner:HRL LAB

Thin battery

A thin battery includes a flat battery body having a positive electrode and a negative electrode having an electrolyte layer disposed between the electrodes. A flexible encapsulating bag seals the battery body with a sealing portion. A positive electrode collector tab and a negative electrode collector tab are respectively connected to the positive and negative electrodes. The tabs penetrate the encapsulating bag. At least one of the tabs includes first and second collector tabs and a safety device so that an electrical connection between the first and second collector tabs may be interrupted when the internal pressure of the encapsulating bag exceeds a predetermined value.
Owner:MITSUBISHI ELECTRIC CORP

Bipolar battery including a pressure sensor

The present invention relates to a bipolar battery provided with a pressure sensor. The battery is provided with a housing 7 containing common gas space 97. The pressure sensor 10; 20; 50; 63; 80; 111 comprises: an actuator 3, 21; 31; 41; 48; 81 configured to transfer an internal pressure P within the common gas space to a reciprocal movement, and a switching device 5; 83 configured to generate a control signal indicative of changes in relation to an initial switching state generated by said reciprocal movement when the internal pressure exceeds a predetermined upper level. The pressure sensor further comprises a reset means 4; 32; 81 to automatically reset the switching device to the initial switch state when the internal pressure goes below a predetermined lower level, whereby said control signal is based on the internal pressure (P) within said sealed common gas space. The present invention also relates to a method for charging bipolar batteries.
Owner:NILAR INT AB

Rechargeable bipolar high power electrochemical device with reduced monitoring requirement

The present invention is drawn to a high power electrochemical energy storage device in a bipolar configuration, comprising at least n stackable cells (20) in bipolar configuration wherein subgroups of m cells are electronically monitored (63). The storage cells (20) have a lithium ion insertion anode (24) and a lithium ion insertion cathode (26), a separator (36), an electrolyte system (36), and a leak-proof seal structure (51). A number of embodiments are disclosed, characterized by a favorable range of m values, in combination with the anode-to-cathode capacity ratio, electrolyte conductivity, and other battery key features, thereby providing a high power device providing long cycle life and excellent power performance over many thousand charge and discharge cycles while minimizing the cost for electronic monitoring. Additionally, the present invention is drawn to a device combining two or more groups of stackable cells in bipolar configuration, either in series or in parallel or any combination thereof, so as to create a high power, high voltage energy storage device.
Owner:PACIFIC LITHIUM NEW ZEALAND

Multi-cell battery charge control

Embodiments of the present invention provide a method and system for controlling a multi-cell battery. In one embodiment of the present invention, a stack of bipolar wafer cells may be connected in series. Each cell may have an area that may be expandable in response to pressure. Such an area may be aligned with a corresponding area of at least one adjacent cell. The invention further includes a trigger mechanism that may be responsive to a force created by pressure generated in a cell in the stack of bipolar cells.
Owner:ELECTRO ENERGY

Secondary battery

Disclosed is a secondary battery having a element for compensating for and preventing volumetric expansion during charging / discharging of the battery, in order to prevent the electrode assembly from deforming due to rising internal pressure and compensate for and prevent the expansion of the secondary battery case. The secondary battery includes an electrode assembly having positive and negative electrode plates having active materials formed on at least one surface of positive and negative electrode collectors and a separator interposed between the positive and negative electrode plates, a case having a space for containing the electrode assembly and at least one element for compensating for and preventing volumetric expansion, and a cap assembly adapted to be coupled to the case and seal it and provided with a terminal portion in electrical connection to the electrode assembly.
Owner:SAMSUNG SDI CO LTD

Sealed rectangular battery and manufacturing method for the same

A sealed rectangular battery has a conductive battery case including an external casing and a sealing cap. The external casing encloses a generator element and is sealed by attaching the sealing cap using heat. The battery includes an electrode terminal with an opposite polarity to the battery case, and a safety valve. The safety valve includes a cap that is charged with the same polarity as the battery case and a valving element that covers a vent hole. The electrode terminal and safety valve are provided separately at different positions on the battery case. This construction is simpler than conventional batteries where the safety valve is integrally formed with an electrode terminal, which means that the electrode terminal can be miniaturized. This battery also has improved internal resistance.
Owner:FDK CORP

Multi-cell battery assembly

A multi-cell battery in which a plurality of electrochemical cells are disposed in a battery case. The battery case includes one or more partitions which divide the interior of the case into a plurality of cell compartments that house the electrochemical cells. The battery case includes at least one gas channel have a tortuous pathway designed to trap electrolyte which may escape from the cell compartments. A unique battery terminal may be molded into the battery case.
Owner:CHEVRON TECH VENTURES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products