Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

282results about "Optical computing devices" patented technology

Microstructure-bearing articles of high refractive index

Blends of oligomeric urethane multi(meth)acrylate; optionally at least one other monomer selected from the group consisting of acrylic monomers, styrenic monomers and ethylenically unsaturated nitrogen heterocycles, preferably a polyol multi(meth)acrylate; and nanoparticles of an ethylenically unsaturated, preferably (meth)acrylic-functionalized, titanium or zirconium compound can be cured by ultraviolet radiation in contact with a photoinitiator to produce optical resinous articles having high refractive indices, haze ratings of at most 5% and other properties which may be tailored according to the desired use.
Owner:SABIC INNOVATIVE PLASTICS IP BV

N-way serial-channel interconnect

Methods and apparatus are described for an n-Way, Serial-Channel interconnect. An apparatus includes a communications network interconnect including an input layer including a plurality of input channels; a multicast channel branching fabric coupled to the input layer; and a modular output layer coupled to the multicast channel branching fabric layer, the modular output layer including a plurality of individual serial data channels; and a plurality of sets of endpoints, each set of endpoints coupled to one of the plurality of individual serial data channels.
Owner:LIGHTFLEET CORP

Optical analysis system and optical train

A multivariate optical computing and analysis system includes a light source configured to radiate a first light along a first ray path; a modulator disposed in the first ray path, the modulator configured to modulate the first light to a desired frequency; a spectral element disposed proximate the modulator, the spectral element configured to filter the first light for a spectral range of interest of a sample; a cavity disposed in communication with the spectral element, the cavity configured to direct the first light in a direction of the sample; a tube disposed proximate the cavity, the tube configured to receive and direct a second light generated by a reflection of the first light from the sample, the tube being further configured to separate the first and second lights; a beamsplitter configured to split the second light into a first beam and a second beam; an optical filter mechanism disposed to receive the first beam, the optical filter mechanism configured to optically filter data carried by the first beam into at least one orthogonal component of the first beam; and a detector mechanism in communication with the optical filter mechanism to measure a property of the orthogonal component to measure the data.
Owner:HALLIBURTON ENERGY SERVICES INC

Devices Having an Integrated Computational Element and a Proximal Interferent Monitor and Methods for Determining a Characteristic of a Sample Therewith

The output of optical computing devices containing an integrated computational element can be corrected when an interferent substance or condition is present. The devices may comprise an optional electromagnetic radiation source; a sample detection unit comprising an integrated computational element and a detector configured to receive electromagnetic radiation that has optically interacted with the integrated computational element and produce a sample signal associated therewith; an interferent monitor located proximal to the sample detection unit, the interferent monitor being configured to produce an interferent signal associated with an interferent substance; and a signal processing unit operable to convert the interferent signal into an interferent input form suitable for being computationally combined with the sample signal, the signal processing unit being further operable to computationally combine the sample signal and the interferent input form to determine a characteristic of a sample in real-time or near real-time.
Owner:HALLIBURTON ENERGY SERVICES INC

MEMS optical switch with thermal actuator

InactiveUS6853765B1Minimize adverse temperature effectAdverse temperature effectCoupling light guidesLogic circuits using opto-electronic devicesEngineeringActuator
A MEMS type optical switch includes a substrate, the substrate including at least one groove formed therein; first and second optical fibers disposed in the at least one groove, the at least one groove including a widened portion for movement of at least one of the first and second optical fibers; a thermal actuator disposed adjacent one of the first and second optical fibers, the thermal actuator comprising at least one v-beam, a pair of anchors connected to ends of the v-beam, and a yoke disposed in a central portion of the v-beam.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Methods and Devices for Optically Determining A Characteristic of a Substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Optical fan-out and broadcast interconnect

Methods and apparatus are described for an optical fan-out and broadcast interconnect. A method includes operating an optical fan-out and broadcast interconnect including: fanning-out an optical signal from an optical signal emitter, of one of a plurality of nodes, with a diverging element of one of a plurality of optics; and broadcasting the optical signal to one of a plurality of receivers of all of the plurality of nodes with a light collecting and focusing element of all of the plurality of optics, wherein the plurality of optics are positioned to define an optics array, the plurality of receivers are positioned to define a receiver array that corresponds to the optics array and the plurality of nodes are positioned to define a node array that substantially corresponds to the receiver array and the optics array.
Owner:LIGHTFLEET CORP

Methods and Devices for Optically Determining A Characteristic of a Substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements are configured to produce optically interacted light and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Devices Having One or More Integrated Computational Elements and Methods for Determining a Characteristic of a Sample by Computationally Combining Signals Produced Therewith

Optical computing devices containing one or more integrated computational elements may be used to produce two or more detector output signals that are computationally combinable to determine a characteristic of a sample. The devices may comprise a first integrated computational element and a second integrated computational element, each integrated computational element having an optical function associated therewith, and the optical function of the second integrated computational element being at least partially offset in wavelength space relative to that of the first integrated computational element; an optional electromagnetic radiation source; at least one detector configured to receive electromagnetic radiation that has optically interacted with each integrated computational element and produce a first signal and a second signal associated therewith; and a signal processing unit operable for computationally combining the first signal and the second signal to determine a characteristic of a sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Fourier scattering methods for encoding microbeads and methods and apparatus for reading the same

A method and apparatus for reading a microbead having a code thereon is provided wherein the code is projected on and read from a Fourier plane. The microbead may be 1-1000 microns (um) or smaller in feature size. The code is projected on the Fourier plane by scattering input light off the microbead. The scattered light from the microbead is directed through an optical arrangement having a transform lens for projecting the code on the Fourier plane, and read on the Fourier plane using a charge coupled device (CCD) or other similar device. The code may include periodic layers of material having different refractivities or phase, including index of refraction differences; periodic spatial modulations having a different phase or amplitude; a periodic binary phase change used to code information in the Fourier plane; a photonic crystal used to encode the information on the microbead, wherein a pattern of holes causes interference between incident and scattered light to form spatial and spectral patterns in the far field that are unique to the pattern of holes; or may be formed in the microbead using a single photoactive inner region, a series of longitudinal holes, different fluorescence regions, or concentric rings of material in a preform.
Owner:ILLUMINA INC

Methods and Devices for Optically Determining A Characteristic of a Substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Methods and Devices for Optically Determining A Characteristic of a Substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Apparatus and methods for optical neural network

An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or moreoptical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
Owner:MASSACHUSETTS INST OF TECH

Maskless lithography with multiplexed spatial light modulators

Imaging systems that use a spatial light modulator (SLM), such as maskless lithography systems using a digital micromirror device (DMD), suffer from low throughput at high resolution because of the increase in the number of pixels to be imaged. A possible solution to this problem is provided by using multiple SLMs. However, packaging multiple SLMs on a suitable base is inefficient because, in an SLM, surrounding the active region, a large inactive region is required for the chip kerf and the connector fan-in; these inactive regions thus prevent close packing of the SLMs. This invention enables close packing of a large number of SLMs by arranging them in twin planes, such that the kerf and fan-in regions overlap substantially. Variations in the optical conjugate distances of different SLMs caused by the twin planarity are eliminated by incorporation of a twin-pane compensating mirror array that corresponds to the SLM array, and introduces a pathlength difference between different mirrors that is complementary to the pathlength difference between corresponding SLM chips. Depth-of-focus problems are thus eliminated. The invention enables significant throughput enhancement, up to 82%, in maskless lithography systems.
Owner:ANVIK CORP

Methods and Devices for Optically Determining A Characteristic of a Substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Methods and Devices for Optically Determining A Characteristic of a Substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements are configured to produce optically interacted light and further configured to be associated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Aperture scanning fourier ptychographic imaging

Certain aspects pertain to aperture-scanning Fourier ptychographic imaging devices comprising an aperture scanner that can generate an aperture at different locations at an intermediate plane of an optical arrangement, and a detector that can acquire lower resolution intensity images for different aperture locations, and wherein a higher resolution complex image may be constructed by iteratively updating regions in Fourier space with the acquired lower resolution images.
Owner:CALIFORNIA INST OF TECH

Imaging Systems for Optical Computing Devices

Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element.
Owner:HALLIBURTON ENERGY SERVICES INC

Business decision modeling and management system and method

A business decision modeling system graphically models business decisions using a rule family structure that adheres to Decision Model principles. In tabular representations, for example, two-dimensional rule families have a heading and a body. The heading includes one or more condition fact types and one conclusion fact type. The body includes unique logic statements corresponding with the heading's fact types, with operators and operands indicating how the logic operates on conditions to determine conclusions. All tested conditions fact types must be true for the conclusion fact type to be true. No two rule families can have the same conclusion fact type, and the conclusion fact type of a first rule family can be a condition fact type of a second rule family. Logic statements are atomic and cannot be further decomposed. The semantic and business integrity of the business rules ensure high quality logic traceable to business objectives.
Owner:SAPIENS SOFTWARE SOLUTIONS DECISION

Three-dimensional image display apparatus

A three-dimensional image display apparatus includes a light source and an optical system including a light modulation unit having pixels for generating a two-dimensional image by modulating light from the light source by the respective pixels and emitting a spatial frequency in the generated two-dimensional image along a diffraction angle corresponding to diffraction orders generated from the respective pixels, a Fourier transform image formation unit for performing Fourier transform on the spatial frequency in the two-dimensional image to generate Fourier transform images corresponding to the diffraction orders, a Fourier transform image selection unit for selecting a Fourier transform image corresponding to a desired diffraction order among the Fourier transform images, and a conjugate image formation unit for forming a conjugate image of the selected Fourier transform image, and further includes a semi-transmissive mirror for changing a light ray travelling direction emitted from the optical system.
Owner:SONY CORP

Authentication system and method

An authentication system using a correlator that correlates an input with a reference wherein at least one of the input and reference comprises a phase volume mask having structures, preferably points, that are each less than about six microns in size and can have an aspect ratio (AR) greater than 1:1 so as to produce a phase encoded random pattern having millions of combinations in a mask that is as small as one square millimeter. The random pattern can be convolved with a second pattern, such as a biometric pattern, to produce a phase convolved mask. The correlator preferably is a nonlinear joint transform correlator that can use ā€œchirpā€ encoding to permit the input to be located in a different plane than the reference. The correlator optically Fourier transforms images of the reference and input that are thereafter nonlinearly transformed and inverse Fourier transformed by a processor to determine the presence or absence of a correlation spike indicative of authenticity. A spatial light modulator (SLM) can be used as an input or reference and preferably is a liquid crystal panel having pixels or elements whose phase or grey scale intensity can be selectively controlled by a processor. The SLM can be used to display a biometric pattern, preferably scanned in real time from a person, that is correlated against an input or reference that can comprise a label on a card, a tag, or another object.
Owner:PHYSICAL OPTICS CORP

Imaging Systems for Optical Computing Devices

Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element.
Owner:HALLIBURTON ENERGY SERVICES INC

Optical cache memory

An optical memory having an input port for receiving an input optical signal to be stored in the optical memory is disclosed. A portion of the optical signal is coupled to a storage loop for storing optical signals by a coupler that transfers a portion of the input optical signal to the storage loop. An optical signal stored in the storage loop is output by coupling a portion of that optical signal to a first external optical waveguide. The storage loop includes a semiconductor optical amplifier for amplifying the signals stored in the storage loop to compensate for losses incurred by those signals in traversing the storage loop. A plurality of such optical memories can be combined to form a larger memory that includes a reconditioning circuit that resets the amplitude of the optical signals to a value that depends on the amplitude of the optical signals.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Methods and Devices for Optically Determining A Characteristic of a Substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Methods and Devices for Optically Determining A Characteristic of a Substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Methods and devices for optically determining a characteristic of a substance

Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
Owner:HALLIBURTON ENERGY SERVICES INC

Plasmostor: a-metal-oxide-si field effect plasmonic modulator

The invention is a system and method for performing all-optical modulation. A semiconductor layer having a defined thickness has an insulator adjacent one surface of the semiconductor. Conductive layers are provided adjacent the semiconductor layer and the insulator. A photodetector is provided to generate an electric field across the conductive layers in response to an input optical gate signal. An input optical signal is modulated by interaction with a plasmon wave generated at the semiconductor / conductive layer interface. By defining the thickness of the semiconductor layer, a desired wavelength of light supports the plasmon waves. Operation of the all-optical modulator requires the provision of an input optical signal of a desired wavelength and the provision of a gate optical signal. An output optical signal is recovered and can be used to store, display or transmit information, for example over a fiber optic communication system, such as a telecommunication system.
Owner:CALIFORNIA INST OF TECH

Reservoir Computing Using Passive Optical Systems

A method comprising providing an input signal to at least one input node of a computing reservoir by temporally encoding the input signal by modulating the at least one photonic wave as function of the input signal is described. The method further comprises propagating the at least one photonic wave via passive guided or unguided propagation between discrete nodes of the computing reservoir, in which each discrete node is adapted for passively relaying the at least one photonic wave over the passive interconnections connected thereto. The method also comprises obtaining a plurality of readout signals, in which each readout signal is determined by a non-linear relation to the at least one photonic wave in at least one readout node of the computing reservoir, and combining this plurality of readout signals into an output signal by taking into account a plurality of training parameters.
Owner:UNIV GENT +1

Optical processing

A method of performing a DFT (discrete Fourier transform) or a DFT derived transform on data, comprising: providing spatially modulated light having spatial coherence, said spatially modulated light representing the data to be transformed; Fourier transforming said spatially modulated light, using an at least one optical element; and compensating for at least one of a scaling effect and a dispersion effect of said at least one optical element, using an at least one dispersive optical element.
Owner:LENSLET
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products