Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

160 results about "Spatial coherence" patented technology

Spatial coherence describes the ability for two points in space, x 1 and x 2, in the extent of a wave to interfere, when averaged over time. More precisely, the spatial coherence is the cross-correlation between two points in a wave for all times. If a wave has only 1 value of amplitude over an infinite length, it is perfectly spatially coherent.

Layer-thickness detection methods and apparatus for wafers and the like, and polishing apparatus comprising same

Methods and apparatus are disclosed for detecting a thickness of a surficial layer (e.g., metal or insulating layer) on a workpiece (e.g., semiconductor wafer) during a process for planarizing the layer, so as to stop the process when a suitable process endpoint is reached. Layer thickness is detected based on a spectral-characteristic signal of reflected or transmitted signal light, obtained by directing a probe light onto the surface of the workpiece. Example spectral characteristics are local maxima and minima of signal-light waveform, differences or quotients of the same, a dispersion of the signal-light waveform, a component of a Fourier transform of the signal waveform, a cross-correlation function of the signal waveform. Alternatively, the zeroth order of signal light is selected for measurement, or a spatial coherence length of the probe light is compared with the degree of fineness of the pattern on the surface illuminated with the probe light. An optical model can be determined based on the comparison, and at least one of the layer thickness and the process endpoint is detected by comparing the measured signal-light intensity with the calculated theoretical signal light intensity.
Owner:NIKON CORP

Reduction of laser speckle in photolithography by controlled disruption of spatial coherence of laser beam

Speckle of a laser beam is reduced by inserting an anti-speckle apparatus in the beam path to disrupt its spatial coherence while maintaining its temporal coherence. In one embodiment, the anti-speckle apparatus is a phase retarder plate bearing periodic optically-coated regions. Transmission or reflection of the beam through coated and uncoated regions causes an internal phase shift of first beam portions relative to second beam portions, thereby disrupting spatial coherence. Size and thickness of the coated regions can be carefully tailored to meet requirements of stepper and scanner equipment manufacturers for maximum allowable spatial coherence expressed as a minimum permissible number of coherent cells across the beam cross-section. An alternative embodiment of an anti-speckle apparatus is a scattering plate bearing a roughened surface. Transmission or reflection of the beam by the roughened surface disrupts the beam's spatial coherence. The correlation length and/or surface height of structures on the roughened surface of the scattering plate may be adjusted to achieve desired divergency and spatial coherence. A liquid matching medium or solid overcoating may be contacted with the roughened surface to adjust the index of refraction at the interface with the roughened surface. The anti-speckle apparatus may serve to outcouple the laser beam, as well, and a fly eye lens may be positioned after the anti-speckle appartus.
Owner:COHERENT GMBH

Dynamic probabilistic power flow (PPF) calculating method considering wind speed predication error temporal-spatial coherence

InactiveCN104485665AReduce uncertaintyDPPF results are accurateClimate change adaptationSpecial data processing applicationsVoltage amplitudeProbability transformation
The invention discloses a dynamic probabilistic power flow (PPF) calculating method considering wind speed predication error temporal-spatial coherence. The method is to analyze the node voltage and dynamic probability distribution of branch power flow of a wind power station built power system, so as to enable operators to analyze a system state conveniently. The method comprises the steps of describing the input variable predication error process according to autocorrelation coefficient stationary process; directly fitting to obtain the predication error distribution on the basis of nonparametric kernel density estimation and according to historical predication error data; performing Nataf transformation technology on the basis of the iso-probability transformation theory to obtain an error sample of temporal-spatial coherence; performing dynamic PPF calculation by the monte carlo simulation method on the basis of latin hypercube sampling so as to obtain the node voltage amplitude value and the digital characteristics and dynamic probability distribution of the branch power flow. By adopting the method, the node voltage and the dynamic probability distribution of the branch power flow can be effectively analyzed; the method has the advantages of being accurate in result and convenient to realize.
Owner:HOHAI UNIV

Spatial coherence feature-based quick identification method for human face expression of any pose

The invention discloses a spatial coherence feature-based quick identification method for a human face expression of any pose. The method comprises the steps of firstly, synthesizing a front face image corresponding to a human face image of any pose; secondly, detecting 51 key feature points based on the synthesized front face image, and extracting key regions by taking the feature points as centers; thirdly, performing quick unsupervised feature learning based on the key regions; and finally, performing convolution sum pooling by taking each key region as a unit to obtain unsupervised feature learning-based high-level features, obtaining a spatial coherence feature used for identifying the human face expression of any pose in combination with the high-level feature and a geometric position feature of each key region, and inputting the spatial coherence feature to an SVM for training to obtain a unified expression identification model, thereby finishing the identification of the human face expression of any pose. According to the method, the problems of low identification rate due to the fact that conventional features do not have a spatial constraint relationship, low efficiency due to the fact that a model needs to be built for each pose in conventional multi-pose human face expression identification, and the like are solved, so that the identification accuracy and efficiency are effectively improved.
Owner:JIANGSU UNIV

Online projection objective wave aberration detection device and method

The invention relates to an online projection objective wave aberration detection device and method. The detection device comprises a light source, a rotary scatterer, a first focusing lens, an optical fiber array, a second focusing lens, a scattering optical element, an object plane optical grating, an image plane optical grating, a two-dimensional photoelectric sensor, a phase-shift control module and a computer, wherein the rotary scatterer is composed of a support, an electric motor and a circular diffusion scattering optical element, and is combined with the multimode optical fiber array for converting a coherent light or partially coherent light source into incoherent light; ten interference fringe patterns with phase shifting amounts of 0, pi/6, pi/3, pi/2, 2pi/3, 5pi/6, pi, 5pi/3, 3pi/2 and 11pi/6 respectively are acquired to calculate a phase position and the influence of multilevel diffraction light interference of the optical grating on the phase position extraction precision is eliminated. The device and the method can improve the modulation effect of the object plane optical grating on the optical field spatial coherence so as to achieve a high-precision alignment effect, reduce the system error of phase position extraction in wave aberration detection and improve the wave aberration detection precision of an optical system.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI

Collinear femto-second laser polarized pump detecting system

ActiveCN101446687AGuaranteed spatial coherenceAvoid problems adjusting beam directionLaser detailsMirrorsRotary stagePhotodetector
The invention relates to a collinear femto-second laser polarized pump detecting system, comprising that a pulse laser is output by a polarized output pulse laser; the laser is rotated in the polarization direction by a wave plate; a light-splitting device divides the laser beam into two beams vertical to each other in the polarization direction; a reflector receives and reflects the laser beams; an acoustooptic modulator modulates the laser beams; an aperture transmits the modulated laser beams; an acoustooptic modulator driver transmits modulation signals for the acoustooptic modulator; an electrically controlled travelling carriage moves forward and backward; an analyzer transmits the laser beams which are vertical to each other in the polarization direction; a photodetector receives the laser transmitted by the analyzer; a magnet fixes an adjusting rack so as to fix a sample; a focusing lens irradiates the laser on the surface of the sample; and an electrically controlled revolving stage fixes the wave plate. The invention combines the two beams of light vertical to each other in the polarization direction by polarized coupling; therefore, the system can ensure spatial coherence of the two beams of light on the sample, thereby avoiding the problem of adjusting direction of light beam; thus, the operation is simpler.
Owner:江苏中国科学院能源动力研究中心 +1

Coaxial Fizeau synchronous phase shifting interferometer capable of adjusting extended light illumination

The invention relates to a coaxial Fizeau synchronous phase shifting interferometer capable of adjusting extended light illumination and belongs to the field of an optical interference measuring device. The coaxial Fizeau synchronous phase shifting interferometer comprises an extended light source assembly, a fronting Michelson type interferometer assembly and a Fizeau main interferometer. In the invention, the fronting interferometer assembly is adopted to generate two illumination light waves of orthogonal polarization state; polarization phase shifting interferometry between a measured surface and a reference surface is realized through match of spatial coherence of the fronting interferometer and the main interferometer; and an additional fringe is removed by using the characteristic of a short coherent optical length of an extended light source space. The coaxial Fizeau synchronous phase shifting interferometer has the characteristics of long measuring distance, continuous and adjustable contrast ratio, continuous and adjustable coherent optical length, easy operation, lower error requirement on a high frequency surface shape of the reference surface and the like; and the coaxial Fizeau synchronous phase shifting interferometer can be used in the fields of high precision detection of an optical element, optical element on-line detection and super-smooth surface detection and the like.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products