Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

130 results about "Microchip laser" patented technology

High density methods for producing diode-pumped micro lasers

A miniaturized laser package is provided comprising a standard semiconductor laser package modified to accept a solid state microchip assembly pumped by the diode laser. Standard packages described in the invention include TO and HHL packages all of which are characterized by small dimensions, well sealed housing, robust mounting features, known characterized materials and economical production and assembly techniques characteristic of the semiconductor processing industry. In particular, the microchip lasers are produced using high density techniques that lend themselves to mass production, resulting in very low unit costs. At the same time, the compact laser devices provide a solution to the problem of providing laser radiation at high beam quality and good reliability features with a variety of wavelengths and operational characteristics and low noise features not available from diode lasers yet relying primarily on standardized designs, materials and techniques common to diode laser manufacturing. The devices constructed according to methods taught by the invention can therefore be readily integrated into numerous applications where power, reliability and performance are at a premium but low cost is essential, eventually replacing diode lasers in many existing systems but also enabling many new commercial, biomedical, scientific and military systems.
Owner:SNAKE CREEK LASERS

Laser self-mixing multi-physical parameter measurement method and device for atmospheric particulate

The invention discloses a laser self-mixing multi-physical parameter measurement method and a laser self-mixing multi-physical parameter measurement device for an atmospheric particulate. The laser self-mixing multi-physical parameter measurement device comprises a microchip laser, a collimating lens, a beam splitter, converging lenses, a photodetector, an amplifier, a data acquisition card and a spectrum analyzer. Laser emitted by the microchip laser is focused onto the atmospheric particulate to be measured through the collimating lens and the converging lens, and part of generated backwards-scattered light is fed back to the laser due to the reversibility principle of an optical path, so that parameters such as power and wavelength of the laser are changed, namely a laser self-mixing effect is achieved. In addition, the beam splitter is additionally arranged in the optical path to split a small part of laser beam for the photodetector to receive, and a laser self-mixing signal is acquired and analyzed by the amplifier, the data acquisition card and the spectrum analyzer. The laser self-mixing multi-physical parameter measurement device has a simple structure, and is easy to regulate; and the detection accuracy of an atmospheric particulate detection device is effectively improved.
Owner:ANHUI INST OF OPTICS & FINE MECHANICS - CHINESE ACAD OF SCI

Semiconductor pumped full-cavity microchip laser device with stable output wavelength

The invention relates to a semiconductor pumped full-cavity microchip laser device with stable output wavelength, which is characterized by comprising a laser device, a temperature sensor, a temperature drive unit, a temperature control device and a refrigerating element, wherein the laser device comprises a semiconductor pumping source, a Nd:YAG crystal and a closed thermal insulation space arranged for the Nd:YAG crystal; a thermoprobe of the temperature sensor contacts with a surface of the Nd:YAG crystal; the temperature drive unit comprises an error amplifier and an H bridge; the temperature control device comprises a data acquisition card and a computer which is connected with the data acquisition card in two directions; a control and display module and a PID digital compensating network are arranged in the computer; the error amplifier and the temperature sensor are electrically connected with each other; the data acquisition card is electrically connected with the error amplifier; the control and display module compares the existing temperature digital signal with the preset standard temperature value to obtain a temperature difference value; and the PID digital compensating network carries out PID digital compensation according to the temperature difference value, and transmits the obtained feedback conditioning signal to the H bridge for power amplification, thereby driving temperature of the refrigerating element. The invention can be widely used in the fields of laser precision measurement and laser technology.
Owner:TSINGHUA UNIV

Measuring system for expansion coefficient of material

The invention relates to a measuring system for the expansion coefficient of a material. The measuring system is characterized by comprising two solid microchip laser feedback interferometer optical systems and an electrical logging and electric control system, wherein a heating furnace is arranged between the two solid microchip laser feedback interferometer optical systems and comprises a furnace chamber; a cavity is formed in the furnace chamber; a perforating hole is symmetrically formed in the two opposite sides of the cavity outward respectively; a perforating hole packaging structure is fixedly arranged at the outer end part of each perforating hole; a window plate is fixed outside each perforating hole packaging structure through a window plate clamping seat; a sample table device capable of accommodating a sample to be measured is further arranged in the cavity body; a heating element and a temperature sensor are fixedly arranged on the inner wall of the furnace chamber in a suspended mode. The measuring system for coefficient of liner expansion has the advantages of complete non-contact, high precision, large temperature measuring range and high resistance to shock, and is particularly suitable for a relatively low surface reflecting material. The measuring system can be widely applied to large temperature range and high precision measurement of expansion coefficient of various materials.
Owner:TSINGHUA UNIV

Novel microchip laser supporting optical fiber output

The invention discloses a novel microchip laser supporting optical fiber output, which belongs to the fields of laser technology and non-linear optics. The novel microchip laser mainly comprises a laser diode pumping source, an optical fiber output system, an optical collimation system, a laser light gain medium and optical elements, wherein pump light enters the optical collimation system for collimating after passing through the optical fiber output system, and is focused onto the gain medium; the film-plated optical elements are arranged in front of and behind the gain medium; the gain medium and the film-plated optical elements in front of and behind the gain medium construct a laser resonant cavity with a sandwich structure; laser light generated by the laser resonant cavity returns along the incident direction of the pump light, passes through the optical collimation system once again, and is output through the optical fiber output system. The novel microchip laser has the characteristics that optical fiber output is performed during the use of an optical fiber pump without any additional output device in a sandwich microchip structure, and a fiber-core pump or a cladding pump can be adopted, so that the flexibility of a system is improved greatly; and meanwhile, the structure can also be applied to pulse modulation of materials such as semiconductor saturable absorbing mirrors, single-wall carbon nanotubes or graphene and the like, and stable pulse output is realized.
Owner:BEIJING UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products