Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

456 results about "Birefringent crystal" patented technology

Photonic variable delay devices based on optical birefringence

Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the “ladder” experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines / cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.
Owner:GENERAL PHOTONICS CORP

Spectrum scaling apparatus used for spectrum imager

The invention discloses a spectrum scaling apparatus used for a spectrum imager. The apparatus is characterized in that: a light beam which is emitted by a broadband light source (1) goes through a diaphragm (2) and a collimating lens (3) and irradiates a wavelength tuning optical filter (4), a plurality of narrowband optical signals which are distributed in a comb-shaped mode and have different wavelengths are outputted, after light intensity adjusting by a broadband bandpass optical filter (5), the signals enter into an integrating sphere (9) from an integrating sphere incident light hole (6) for depolarization and space uniformity processing, and an integrating sphere light extraction hole (8) outputs a surface light source. A spectrum imager to be measured is placed on the light extraction hole (8) for spectrum scaling. According to the apparatus, a birefringence crystal is utilized to carry out light transmission rate modulation, a passband peak value position and a bandwidth size can be adjusted, a plurality of narrowband light intensity signals changing with a wavelength are provided in a broadband range, wavelength scanning is not needed when carrying out spectrum scaling on the spectrum imager, wavelength scaling with one-time imaging is realized, and the apparatus is suitable for scaling a large field of view and large caliber spectrum imager.
Owner:SUZHOU UNIV +1

Light and small interference imaging spectrum full-polarized detection device

The invention discloses a light and small interference imaging spectrum full-polarized detection device comprising a preposed optics looking-out system, a static full-light modulation module, an angle shearing static interference imaging spectrometer, an imaging mirror set and a detector which are coaxially and successively arranged in sequence, wherein the detector is connected with a signal obtaining and processing system; after being collected, collimated and performed with stray light elimination by the preposed optics looking-out system, irradiation light emitted by a target source enters the static full-light modulation module; after passing through an angle shearing birefringent crystal set, one beam of modulation line polarized light is sheared into polarization light at an angle; after passing through an analyzer, the polarization light is divided into two beams of line polarized lights; the two beams of the line polarized lights are gathered in the detector after passing through the imaging mirror set; and the received signal is processed by the signal obtaining and processing system to obtain a target image, hyperspectral information and full-polarized information. The invention has the characteristics of compact and simple structure, no moving components and large luminous flux, can obtain a target two-dimensional space image, one-dimensional hyperspectral information and integral polarization information in one time.
Owner:XI AN JIAOTONG UNIV

Method capable of adjusting polarization and intensity of terahertz wave rapidly and continuously

The invention relates to a method capable of adjusting the polarization and the intensity of a terahertz wave rapidly and continuously. According to the method, a focusing lens is arranged at the outlet of a femto-second laser; incident laser passes through the focusing lens and a doubling frequency crystal in sequence to generate frequency doubled light; the frequency doubled light and remaining fundamental frequency laser pass through a uniaxial birefringent crystal wafer together; according to the principle that the refractive indexes of the fundamental frequency laser and the frequency doubled light in a uniaxial birefringent crystal are different, the optical path difference, namely the time delay, between the fundamental frequency laser and the frequency doubled light can be changed by adjusting the thickness of the uniaxial birefringent crystal wafer and the spatial included angle between a glass piece and an incident light beam, so that the relative phase between the fundamental frequency laser and the frequency doubled light is changed; and therefore, the polarization and the intensity of the finally generated terahertz wave are adjusted. Finally, the generated terahertz wave enters a terahertz wave detection system after being filtered by a high-resistance silicon wafer. By the method, the polarization and the intensity of the terahertz wave can be adjusted rapidly and continuously; and the operation is simple, rapid and effective.
Owner:UNIV OF SHANGHAI FOR SCI & TECH

Method utilizing polarization-controllable T-Hz wave to measure optical axis direction of birefringent crystal

The method of the invention comprises the following steps: (1) moving a BBO crystal to change the distance from the BBO crystal to a plasma to obtain the relationship between the angle theta of the polarization direction of T-Hz wave relative to horizontal direction and the distance d from the BBO crystal to the plasma; (2) substituting the refractive indexes of T-Hz wave under different frequencies to a formula for calculating phase delay, thus obtaining the relationship of phase delay between the two axes of the birefringent crystal along with frequency change; (3) respectively selecting a corresponding T-Hz wave frequency f1 when the phase delay is odd times of pi and a corresponding T-Hz wave frequency f2 when the phase delay is even times of pi, moving the BBO crystal, and measuring the motion distance delta d of the BBO crystal corresponding to the T-Hz waves of frequency f1 and f2 at the nearest neighbor part with the minimum amplitude; and (4) calculating the included angle alpha between the birefringent crystal optical axis and the horizontal direction. Therefore, the invention can measure the optical axis direction of the birefringent crystal without rotating the birefringent crystal, thereby ensuring the measurement along the optical axis direction of the birefringent crystal to be more convenient and accurate.
Owner:CAPITAL NORMAL UNIVERSITY

Method for preparing two-dimensional metallic photonic crystal structure in large area through femtosecond laser direct writing

Provided is a method for preparing a two-dimensional metallic photonic crystal structure in large area through femtosecond laser direct writing. The invention provides a method and experiment device for preparing the periodically-distributed two-dimensional photonic crystal structure with the feature size being the sub-micron dimension in one step in the large area by focusing identical-wavelength double-pulse femtosecond laser on the surface of metal through a plano-convex cylindrical lens, and the identical-wavelength double-pulse femtosecond laser is obtained based on the spectrophotometry of birefringent crystals and has the features of collinear transmission, cross polarization and picosecond time delay. Two-dimensional periodic structure patterns can be effectively regulated and controlled by changing the energy and the number of pulses of input laser, the thicknesses and the azimuth angles of the birefringent crystals and the like. Through the combined design of different linear polarization directions and the variable time delay feature of two femtosecond laser pulses and focusing of the cylindrical lens, preparation of the two-dimensional metallic photonic crystal structure within the large area is achieved conveniently and quickly. The novel preparation method adopting the double-pulse femtosecond laser with cross polarization and variable time delay has potential important applications in the field of material micro-nano processing and preparation.
Owner:NANKAI UNIV

Method and apparatus for the estimation of the temperature of a blackbody radiator

Remote sensing of the temperature of a greybody or blackbody radiator is effected by passing its radiation (24) through a modulated infrared filter spectrometer. The infrared filter comprises, in sequence, a band pass filter (20), a first polariser (21) which polarises the radiation, an electro-optical element (22) which splits the polarised radiation into two orthogonally polarised components, and a second polariser (23). A lens (28) images the radiation leaving the second polariser onto a detector (27). The electrical signal from the detector (27) is input to a numerical analyser. The electro-optical element (22), typically comprising a birefringent crystal assembly (25) and a birefringent trim plate (26), is configured so that the net optical delay of the orthogonally polarised components passed through it is such that the recombined components are at or near a peak or trough in their interferogram. A sinusoidally varying voltage is applied to the electro-optical element to modulate the net delay of the components passed through the electro-optical element. The numerical analyser is programmed to compute the harmonic amplitude ratio (the ratio of signal amplitudes at the fundamental and second harmonic of the frequency of the modulating voltage) of the signal that it receives from the detector (27). The harmonic amplitude ratio is a function of the temperature of the radiator, which can be estimated by reference to a calibration look-up table.
Owner:AUSTRALIEN NAT UNIV

Miniaturized full Stokes vector polarization imaging device based on binary digital coded birefringent crystal

The invention discloses a miniaturized full Stokes vector polarization imaging device based on a binary digital coded birefringent crystal, including a spectral filter (1), an imaging lens (2), a binary digital coded birefringent crystal sheet (3), a micro polarizer array (4), and a light intensity detector (5). Binary digital coding is carried out on the birefringent crystal sheet by making use of the birefringence effect of a birefringent crystal and using a micro sodium optical processing method, and the birefringent crystal sheet is integrated with the micro polarizer array and the light intensity detector to form a compact and fully-functional full Stokes vector polarization imaging device. A full Stokes vector can be acquired through only one exposure, and the real-time performance is good. The device has a compact structure and a stable system. The micro optical structure is large, the requirement on precision is low, the cost is low, and the device can be mass produced. The device has low requirement on environment, and has stable performance. The device can be widely used in important areas such as astronomical polarization imaging, biological tissue detection and medicinediagnosis, remote sensing imaging, and target detection.
Owner:INST OF OPTICS & ELECTRONICS - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products